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Shared history 

• Projets de restauration 

– Tom (by Jim Douglas) 

– Jean (by Jim Douglas) 

– Tom’s French (by Jérôme) 

• N.B.: Jérôme also could have chosen to 
be a restaurateur gastronomique, but 
fortunately for science, he didn’t 

• A few stories … 

• No new results to report … 



My real job for NSF (1) 



My real job for NSF (2) “Stampede” 



Outline 
(in defense of operator splitting) 

• Operator splitting “decoupling” philosophy for 

modeling of complex multiphase systems 

• Examples 

– 2-phase 2-component flow 

– Choice of multicomponent primary variables 

– Space-time AMR, multidomain / scale / grid / physics 

– Lagrangian transport, Eulerian diffusion, etc. 

• Adjoint ↔ particle; multiphase multicomponent 

• Generic approach 

• Potential payoffs 

• Mixed methods on hexahedra 



Modeling of complex multiphase systems 

• Model complexity – processes, domains, phases, 

components 

• Include important couplings to maintain fidelity to physics 

• Computational complexity – too expensive to keep 

strong couplings throughout 

• Thus:  need “smart”, robust decoupling approaches to 

computation 

• Intelligent operator splitting:  decouple judiciously 

(accurately) at intermediate steps – efficient 

computations on weakly coupled subsystems 

• Restore couplings in final result (it’s not just model 

reduction; the complex whole is not the sum of the parts) 

– converge nonlinear residual to 0 as fast as possible 



2-phase 2-component flow 

• Water / oil  or  water / NAPL 

• Phase velocity Vα :  strong function of phase 

saturation  Sα  

• Total velocity  V:  comparatively weak function 

of phase saturation 

• Small capillary pressure  →  phase pressure  pα 

strong function of phase pressure  pβ   

• Thus:  Model (V, Sα)  is better for decoupling 

than  Model (pα, pβ)  [different from (pα, pc)] 

 



Another familiar example 

• Choice of primary variables in a 

multiphase multicomponent system 

(compositional oil reservoir model) 

• Lump certain subsets of components into 

pseudocomponents 

• Stronger phase-behavior coupling within 

these subsets than between the subsets 



Space-time adaptive mesh refinement 
(multidomain / scale / grid / physics) 

• Space-time refined patches, non-matching, 
hierarchical, etc. (adaptive  nonlinear) 

• Level of resolution such that couplings 
(exchange terms) with larger system are 
nearly static or linear at that scale – not 
really weak coupling, but tractable coupling 

• Can be preconditioned by linearized terms 

• Thus:  rapid nonlinear convergence 



Mass transfer / reactions 

and transport 

• Lagrangian frame of reference 

• Follow moving fluid mixtures in each phase 

• Expect weaker coupling of transport to phase 

behavior and reactions than in Eulerian frame 

• Basic idea of Eulerian-Lagrangian methods:  

honor physical constraints on efficiency, avoid 

artificial mathematical constraints (e.g., CFL) 



Multiphase multicomponent system 
• Time step:  compute nonlinear residual(0) and Jacobian, then for 

Newton iteration(1) to convergence do 

– Solve pressure (flow) equation for phase velocities  Vα  (non-Newt. OK) 

– Use explicit Lagrangian algorithm to advect each component  i = 1,…,ni  
in each phase  α = 1,…,nα,  putting resulting masses on right-hand 
sides of appropriate cell component equations (almost like source/sink) 

– “Flash” each cell to re-equilibrate phases (or apply kinetics over the time 
step), changing the RHSs (like source/sink); similarly for other reactions 

– Solve for phase saturations, component concentrations, etc., accounting 
for remaining physical processes, if any (diffusion, dispersion, thermal 
conduction, sorption, …) 

– Compute nonlinear residual(k) and Jacobian 

• Remark:  most of this is done in existing non-simultaneous-implicit 
codes; main change is substitution of advection algorithm 

• Remark:  mass is conserved; volume might not be conserved at 
intermediate iterations; reminiscent of Watts (c. 1983) self-correcting 
volume errors → full volume convergence might not be necessary 

• Our focus:  inside iteration(k), advect component  i  in phase  α,  
known velocity  Vα,  no mass transfer; thus all components in phase 
α  advect together at the same velocity 



Modified method of characteristics (MMOC) 

“Eulerian-Lagrangian”, “Semi-Lagrangian” 



Eulerian-Lagrangian localized adjoint method (ELLAM) 



Finite volume ELLAM; properties 

• Extension of MMOC 

• Conservative, boundary 

conditions systematic 

• Physical integral terms 

• 3D, parallelizability, … 

• Framework for space-

time local refinement 

• Convergence analysis 

• No maximum principle; 

nonphysical oscillations 

on too-coarse grids 



Immiscible displacement 

• Phase = component,  ciα = δiα 

• Constant density  ρα ≡ 1,  porosity  Φ ≡ 1, 
no reactions / sources  (Ri = 0) 

• Reduces to  

 (Sα)t  +  div Vα  =  0,    Vα  =  V f(Sα) 

• Shows how to advect component  α  in 

phase  α;  simple generalization to mixture 

of components  i  in phase  α 



Adjoint ↔ Particle / mass / volume propagation 

• Space-time test function  wα,E(x,t): 

– Characteristic (indicator) function of element  E  at time  t1 

– Satisfies adjoint condition  Au* wα,E = 0  ↔  constant along 

particle trajectories;  E  traces back to  Eα 

• Resulting primal equation: 

 ∫E Sα(t
1)  +  spatial boundary term  =  ∫Eα

 Sα(t
0) 

• Thus, advection algorithm maps  Eα  at  t0  to  E  at  t1,  

moves volumes through particle-velocity field 

• Particle velocity always appears:  consider case of 

shrinking  E  to a point 

• Hard part of advection algorithm:  computing 

correspondence  E ↔ Eα;  once done, simply put  Eα  

integral on right-hand side of primal cell  E  equation 



Multiphase tracebacks 



Remarks on adjoint ↔ particle 

• Adjoint relation is linear with respect to  w;  
characteristics don’t cross, no shocks form 

• Matches physical interpretation of mass 

propagation – trailing particles don’t overtake 

leading ones, particles don’t disappear into a 

shock; method mimics multiphase flow physics 

• Dual space (e.g., ELLAM) is natural framework 

for particle-propagation scheme; primal methods 

(e.g., MMOC) see wave velocities, could 

encounter greater difficulties with shocks, etc. 



Primal / dual comparison 

 



Multiphase multicomponent system 



Summary and conclusions (ELM) 

• Lagrangian advection more favorable than 
Eulerian for decoupling during nonlinear 
iterations, and for solution accuracy 

• Adjoint ↔ mass / volume;   primal ↔ waves 

• Adjoint characteristics are more tractable;      
track mixture of components in each phase; 
advection similar to source/sink in full system 

• Core advection algorithm of tracking            
masses / volumes in phases is the hard part 

• Conceptually, extension to general complex fluid 
systems appears to be worked out 



Generic Newton-like time-stepping 

algorithm 

• Nonlinear residual includes all couplings 

• Each iteration decouples subsystems 

– Neglect weak couplings, or 

– Approximate couplings with static or linear (i.e., 
tractable) terms 

• Objective: 

– Uncover unifying principles that could enable a 
broad range of systems to be analyzed in this 
“smart” way 

• Decouple (nonlinear), then linearize:  
preferable to linearize, then decouple (linear) 



Potential payoffs 

• Physical understanding of decomposition 

• Smaller systems, few nonlinear iterations 

• Parallelism:  divide and conquer (but 

watch out for multicore architectures) 

• Uncertainty analysis: 

– Uncertainty of whole is close to aggregated 

uncertainties of weakly coupled subsystems 

– Perform expensive uncertainty analysis on 

subsystems 

• Similarly for sensitivity analysis 



Summary and conclusions 
(operator splitting) 

• Conceptual framework that potentially 

applies to a wide variety of coupled 

systems, operators 

• Look for weak or tractable couplings at 

nonlinear level 

• Avoid near-redundant tight couplings 

• Real (e.g., phase) transition points are hard 

• May all your bottlenecks be physical 



Mixed methods, hexahedra, RT0, 

Piola transform, etc. 



Difficulties in 3-D 



Control-volume RT0 mixed method 



Linear and quadratic fluxes 



Quadratic flux and 

velocity interpolation 



Linear and quadratic flux results 



The difficulties aren’t just theoretical 



Happy 

“Retirement”! 


