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Shared history

* Projets de restauration
— Tom (by Jim Douglas)
— Jean (by Jim Douglas)
— Tom’s French (by Jérbme)

« N.B.: Jéerdme also could have chosen to

be a restaurateur gastronomique, but
fortunately for science, he didn't

* A few stories ...
* No new results to report ...



My real job for NSF (1)

Dear Colleague Letter: Integrated NSF Support Promoting
Interdisciplinary Research and Education (INSPIRE)

BACKGROUND

The Integrated NSF Support Promoting Interdisciplinary Research and Education (INSPIRE) pilot seeks to support bold
interdisciplinary projects in all NSF-supported areas of science, engineering, and education research. INSPIRE has no
targeted themes and serves as a funding mechanism for proposals that are required both to be interdisciplinary and to
exhibit potentially transformative research (IDR and PTR, respectively). Complementing existing NSF efforts, INSPIRE was
created to handle proposals whose:

» Scientific advances lie outside the scope of a single program or discipline, such that substantial funding support from
more than one program or discipline is necessary.

# Lines of research promise transformational advances.

* Prospective discoveries reside at the interfaces of disciplinary boundaries that may not be recognized through
traditional review or co-review.

To receive funding as an INSPIRE-appropriate project, all three criteria must be met. INSPIRE is not intended to be used for

interdisciplinary projects that can be accommodated within other NSF funding mechanisms or that continue well-established
practices.

The implementation of the INSPIRE pilot is based on two overarching goals:

Goal 1: To emphasize to the science, mathematics, engineering and education research community that NSF is welcoming
to bold, unconventional ideas incorporating creative interdisciplinary approaches. INSPIRE seeks to attract unusually
creative high-risk/high-reward "out of the box" interdisciplinary proposals.

Goal 2: To provide NSF Program Officers (POs) with additional tools and support to engage in cross-cutting collaboration
and risk-taking in managing their awards portfolios.

INSPIRE supports projects that lie at the intersection of traditional disciplines, and is intended to 1) attract unusually
creative high-risk / high-reward interdisciplinary proposals; 2) provide substantial funding, not limited to the exploratory
stage of the pursuit of novel ideas (unlike NSF's EArly-concept Grants for Exploratory Research, or EAGER); and 3) be open
to all NSF-supported areas of science, mathematics, engineering, and education research. NSF will initiate an external
formative assessment to test whether the INSPIRE pilot is achieving program and portfolic-level goals.




My real job for NSF (2) "Stampede”

Award Abstract #1134872

Enabling, Enhancing, and Extending Petascale Computing for
Science and Engineering

NSF Org: ACI
Search Awards Division of Advanced CyberInfrastructure

Recent Awards
— Initial Amendment Date: September 15, 2011
Presidential and Honorary

Awards
— Latest Amendment Date: September 15, 2014

About Awards
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Outline
(in defense of operator splitting)

Operator splitting “decoupling” philosophy for
modeling of complex multiphase systems

Examples

— 2-phase 2-component flow

— Choice of multicomponent primary variables

— Space-time AMR, multidomain / scale / grid / physics
— Lagrangian transport, Eulerian diffusion, etc.

Adjoint <« particle; multiphase multicomponent
Generic approach

Potential payoffs

Mixed methods on hexahedra



Modeling of complex multiphase systems

Model complexity — processes, domains, phases,
components

Include important couplings to maintain fidelity to physics

Computational complexity — too expensive to keep
strong couplings throughout

Thus: need “smart”, robust decoupling approaches to
computation

Intelligent operator splitting: decouple judiciously
(accurately) at intermediate steps — efficient
computations on weakly coupled subsystems

Restore couplings in final result (it's not just model
reduction; the complex whole is not the sum of the parts)
— converge nonlinear residual to O as fast as possible



2-phase 2-component flow

Water / oil or water / NAPL

Phase velocity V,: strong function of phase
saturation S,

Total velocity V: comparatively weak function
of phase saturation

Small capillary pressure — phase pressure p,
strong function of phase pressure Py

Thus: Model (V, S,) is better for decoupling
than Model (p,, p,) [different from (p,, P)]



Another familiar example

* Choice of primary variables in a
multiphase multicomponent system
(compositional oll reservoir model)

* Lump certain subsets of components into
pseudocomponents

» Stronger phase-behavior coupling within
these subsets than between the subsets



Space-time adaptive mesh refinement
(multidomain / scale / grid / physics)

Space-time refined patches, non-matching,
hierarchical, etc. (adaptive = nonlinear)

Level of resolution such that couplings
(exchange terms) with larger system are
nearly static or linear at that scale — not
really weak coupling, but tractable coupling

Can be preconditioned by linearized terms

Thus: rapid nonlinear convergence



Mass transfer / reactions
and transport

Lagrangian frame of reference
Follow moving fluid mixtures in each phase

Expect weaker coupling of transport to phase
behavior and reactions than in Eulerian frame

Basic idea of Eulerian-Lagrangian methods:
honor physical constraints on efficiency, avoid
artificial mathematical constraints (e.g., CFL)



Multiphase multicomponent system

+ Time step: compyte nonlinear residual®) and Jacobian, then for
Newton iteration'!) to convergence do

— Solve pressure (flow) equation for phase velocities V, (non-Newt. OK)

— Use explicit Lagrangian algorithm to advect each component i = [, ...,n;
in each phase a = /,...,n,, putting resulting masses on right-hand
sides of appropriate cell component equations (almost like source/sink)

— “Flash” each cell to re-equilibrate phases (or apply kinetics over the time
step), changing the RHSs (like source/sink); similarly for other reactions

— Solve for phase saturations, component concentrations, etc., accounting
for remaining physical processes, if any (diffusion, dispersion, thermal
conduction, sorption, ...)

— Compute nonlinear residual® and Jacobian

« Remark: most of this is done in existing non-simultaneous-implicit
codes; main change is substitution of advection algorithm

 Remark: mass is conserved; volume might not be conserved at
intermediate iterations; reminiscent of Watts (c. 1983) self-correcting
volume errors — full volume convergence might not be necessary

«  Our focus: inside iteration®), advect component i in phase a,
known velocity V,, no mass transfer; thus all components in phase
o advect together at the same velocity



Modified method of characteristics (MMOC)
“Eulerian-Lagrangian”, “Semi-Lagrangian”

IMMOCI

EULERIAN-LAGRANGIAN METHOD (ELM).
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Advantages

e Self-adjoint (better for iterative solvers)

o Parallelizable

o Straightforward in 2D, 3D

Disadvantages

e Non-conservative

o Ad hoc treatment of boundary conditions

Results

e Theoretical convergence proofs (optimal)

o Excellent nonoscillatory approximations if at least 3 to 4 intervals
across steep fronts

e Large, accurate time steps



Eulerian-Lagrangian localized adjoint method (ELLAM)

LOCALIZED ADJOINT METHODS Celia, Busse ll, Hervrera, Eu'mj
CC"&. Herrera WEAK ELLAM ANR('??O)
Adjoint method for Lu = f: Others since 1950’
f fwdz _f Luwdz w/ uL*wd:c+f (bdry terms) dS ® Space-time finite elements and test functions
Q —a ;9) N

® QOriented along characteristics
Choose test function w such that L*w = 0

Not practical in general (like global Green's function)

. W(x,t)
Localize: L*w = 0 on each element, w continuous \
A t"+1

Example: Lu=w + Vuy — Dug,
L'w = —w; — Vw, — Dwy,
=0
Defi o
efine w so that locally { Vaw, + Dwg, = 0 /
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pe >> 2 (advection-dominated) | pe << 2 (dispersion-dominated)

t

1 — e—pe(.’L‘/AIC) T o

1—gre Az u.+vu,—-Du_)Yw dx dt
— f JorvisDuz)
A i ' '

Integrate by parts in space

Backword Exler time 'm"f'e.sr«‘ﬁm <> MMOC

‘t“
Same disadvantages as Eulerian methods = 2 Z — At -

- —

w(z) =




Finite volume ELLAM; properties

CONTROL-VOLUME ELLAM / FVE

Healy , Russel(
R (1993)
AR (1998)

¥ xF
Xy Ton

® Piecewise-constant test function
® |ocal conservation
e Finite-element fepresentation of solution

L Fini{e-volume element (FVE) method on -ga_(zﬁj?;{a“g“

Lagrangian elements s
(EVE well-designed for AFAC) MeCormick,
® Similar numerical results Celia (exact ®MS in'i‘g_o,riﬁu

¢ Iwplevaevted in 3-D solute fﬂ*irol"'l' code
MOC3D-ELLAM)

Extension of MMOC

Conservative, boundary
conditions systematic

Physical integral terms
3D, parallelizabllity, ...

Framework for space-
time local refinement

Convergence analysis

No maximum principle;
nonphysical oscillations
on too-coarse grids



Immiscible displacement

Phase = component, C;, = o;,
Constant density p, =1, porosity @ =1,
no reactions / sources (R; = 0)
Reduces to
(S) +divV, =0, V, = VIS)

Shows how to advect component a In
phase «a; simple generalization to mixture
of components 1 in phase «



Adjoint « Particle / mass / volume propagation

» Space-time test function W, (X,t):
— Characteristic (indicator) function of element E attime t!

— Satisfies adjoint condition A;* W, =0 < constant along
particle trajectories; E traces backto E,

« Resulting primal equation:
Je S, (t1) + spatial boundary term = an S, (t%

- Thus, advection algorithm maps E_ at t° to E at t!,
moves volumes through particle-velocity field

« Particle velocity always appears: consider case of
shrinking E to a point

« Hard part of advection algorithm: computing
correspondence E <> E_; once done, simply put E_
integral on right-hand side of primal cell E equation



Multiphase tracebacks

n+1



Remarks on adjoint «» particle

« Adjoint relation is linear with respect to w,
characteristics don’t cross, no shocks form

« Matches physical interpretation of mass
propagation — trailing particles don’t overtake
leading ones, particles don’t disappear into a
shock; method mimics multiphase flow physics

« Dual space (e.g., ELLAM) is natural framework
for particle-propagation scheme; primal methods
(e.g., MMOC) see wave velocities, could
encounter greater difficulties with shocks, etc.



Primal / dual comparison

NONLINEAR FLUX, SHOCKS, SYSTEMS

Primal direct equation Dual adjoint equation

Solution u: element of primal space Test fct w: linear fnal in dual space
e.g., evaluate mass in a subdomain

Auv=w+ (f(uw)z =0 Arw = v + f(w)wy =0

Weak form (Au,w) = [; fy Auw =0 {(Au,w) = f; [, ALw+ boundary terms

Wave velocity ¢ = f'(u) Particle velocity v = f(u)/u
propagates solution values propagates mass

Shocks (waves break) No shocks (particles don’t disappear)

Nonlinear Linear

Wave methods (Riemann, etc.) Mass-carrying particle methods

w sat. adjoint eq. = u sat. [y u(t)w(t1) = [ u(to)w(ts) (advection)
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Multiphase multicomponent flow: system of nonlinear PDEs

e Mass particles move in phases
e Test functions w,, one for each phase

e Conservation eq. for each component, summed over its phases



Multiphase multicomponent system

MULTIPHASE MULTICOMPONENT FLOW

Assume phase Darcy velocities V, available from flow solver (previous
time step or iteration)

Conservation of mass equation for component :
(%: d)sﬂpacia‘)t +V. (% pavacia) = Ri:

where o = 1,...,n,.

Weak form: Space-time test function w,(Z,t) for each phase. De-
compose component i conservation equation into n, sub-equations.
Weak form for component i in phase o is

n tn+1 — .
fﬂ(qbsapﬂciawa) + + j;n /59 pavn * NCia Wy
tﬂ-i-i

/_Q Riqw, + /ﬂ(ffssapn-cmwcx)n

zfi”

subject to the adjdint particle-velocity equation

Sa(wa) + Vo - Vwa =0, a=1,...,7,.

Reduction from n;n, equations to n; equations in terms of global
concentrations ¢; or global mole numbers comes from phase equilib-
ria. Advection is done (explicitly, via Lagrangian tracking) for each
component in each phase as above. Assuming that phase equilibria
can be defined in terms of global concentrations, re-sum the above
weak form over the phases after the advection step.

Remark: 7, = V, /¢S, is the particle velocity (of all components)
in phase a.

Rgmark: This reduces to familiar special cases under simplifying
sumptions; e.g., two-component incompressible oil-water with no
mass transfer, single-phase multicomponent.

Remark: In Va: could encounter discontinuities or rapid changes
that propagate at wave speed (not particle speed). In a realistic
problem, these are not likely to be as severe as those in the 1D
examples.



Summary and conclusions (ELM)

Lagrangian advection more favorable than
Eulerian for decoupling during nonlinear
iterations, and for solution accuracy

Adjoint < mass / volume; primal <« waves

Adjoint characteristics are more tractable;
track mixture of components in each phase;
advection similar to source/sink in full system

Core advection algorithm of tracking
masses / volumes in phases is the hard part

Conceptually, extension to general complex fluid
systems appears to be worked out



Generic Newton-like time-stepping
algorithm

Nonlinear residual includes all couplings

Each iteration decouples subsystems

— Neglect weak couplings, or

— Approximate couplings with static or linear (i.e.,
tractable) terms

Objective:

— Uncover unifying principles that could enable a
broad range of systems to be analyzed in this
“smart” way

Decouple (nonlinear), then linearize:
preferable to linearize, then decouple (linear)



Potential payoffs

Physical understanding of decomposition
Smaller systems, few nonlinear iterations

Parallelism: divide and conquer (but
watch out for multicore architectures)

Uncertainty analysis:

— Uncertainty of whole Is close to aggregated
uncertainties of weakly coupled subsystems

— Perform expensive uncertainty analysis on
subsystems

Similarly for sensitivity analysis




Summary and conclusions
(operator splitting)

Conceptual framework that potentially
applies to a wide variety of coupled
systems, operators

Look for weak or tractable couplings at
nonlinear level

Avoid near-redundant tight couplings
Real (e.g., phase) transition points are hard

May all your bottlenecks be physical



Mixed methods, hexahedra, RT,,

Piola transform, etc.

Properties of Piola transforwmation
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Difficulties in 3-D
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Control-volume RT, mixed method

CONTROL-VOLUME MIXED METHOD

CONTROL-VOLUME MIXED METHOD
ON RECTANGLES ON QUADRILATERALS
Reference mapping
Shape and weighting functions are different e o S ool

+(zu — 10 — o1 + z00) 37,
¢ Velocity weighting functions constant on halves of cells Y(E9) = v+ (v10 — 00)2 + _.!'im]y
+y = y10 — yor + Yoo)29-

¢ Shape functions as in standard mixed method

o Pressure weighting functions as in standard mixed method
Inverse mapping exists for convex quadrilaterals

Pressure shape functions: constant on cells Q; ;
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Linear and quadratic fluxes

FLUX TRUNCATION ERRORS
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Quadratic flux and
velocity interpolation

FROM FLUXES To VELOCITIES ({’rit[fmc'ﬁmt)
DETERMINATION OF QUADRATIC CoRReCTION
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Linear and quadratic flux results
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The difficulties aren’t just theoretical
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Happy
“Retirement’!




