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Introduction

The Tokamak: The Tokamak is an experimental machine which aims to confine
the plasma in a magnetic field to control the nuclear fusion of atoms of mass law.
The real-time reconstruction of the plasma magnetic equilibrium in a Tokamak is
a key point to access high performance regimes.
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Introduction

The plasma equilibrium:
We denote by (r , ϕ, z) the three-dimentional cylindrical coordinates system. Since
the tokamak is an axisymmetric troidal device, we may assume that all magnetic
quantities do not depend on the troidal angle ϕ.

Γ

Ωp

Plasma
Σp

Ωv Vaccum region

The plasma equilibrium may be studied in any cross
section (r , z), named poloidal section.
It is described by the equation

Lψ = 0 in Ωv

− Ωv is the domain included between the tokamak boundary Γ
and the plasma boundary Σ, called the vacuum region.
− ψ is the poloidal magnetic flux.
− L is the Grad-Shafranov operator
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The Tokamak problem

The Tokamak problem : We consider here the inverse problem of determining
plasma boundary Σp location from over-specified boundary data on Γ.

Γ

Ωp

Plasma
Σp

Ωv Vaccum region

Knowing a complete set of Cauchy data,
the poloidal flux ψ satisfies the system

Lψ = 0 in Ω\Ωp,
1

r

∂ψ

∂n
= Φ on Γ,

ψ = ψm on Γ,
ψ = 0 on Σp.

− Ω is the domain limited by the boundary Γ,
− Φ is the magnetic field and ψm is the measured poloidal flux on Γ.

In this formulation the domain Ω is unknown since the free plasma boundary Σp

is unknown. This problem is ill posed in the sense of Hadamard.
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The Tokamak problem

Formulation of the problem: In order to determine the unknown plasma
boundary Σp location we propose two formulations for the considered inverse
problem.

The first formulation : consists in finding the optimal location of the plasma
boundary ΣP minimizing the cost function

T (ψ, Σp) :=
∫

Γ
|ψ− ψm|2 ds

where ψ is the solution to
Lψ = 0 in Ω\Ωp,

1

r

∂ψ

∂n
= Φ on Γ,

ψ = 0 on Σp.
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The Tokamak problem

The Kohn-Vogelius cost function : For any plasma domain Ωp, we define two
forward problems:
the first one is associated to the magnetic field Φ (Newmann datum):

(PN )


LψN = 0 in Ω\Ωp

1

r

∂ψN

∂n
= Φ on Γ

ψN = 0 on Σp.

the second one is associated to the measured poloidal flux ψm(Dirichlet datum)

(PD )

 LψD = 0 in Ω\Ωp

ψD = ψm on Γ
ψD = 0 on Σp.

The identification process is based on the minimization of the following energy
function

K(Ω\Ωp) =
∫

Ω\Ωp

1

r
|∇ψD −∇ψN |2 dx.
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Topological Sensitivity analysis

Topological gradient method:

Main idea : studying the variation of the
design function J with respect to the
creation of a small hole ωε in Ω.

ωε

Γ

Ω

It leads to an asymptotic expansion of the form

J (Ω\ωε)−J (Ω) = f (ε)δJ (z) + o(f (ε)).

where

f (ε): is a scalar function known explicitly and goes to zero with ε
limε→0 f (ε) = 0.

δJ : topological gradient, called also topological sensitivity.

In order to minimize the cost function, the best location to insert a small hole in
Ω is where δJ is most negative.

In fact if δJ (z) < 0, we have J (Ω\ωε) < J (Ω) for small ε.
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Topological Sensitivity analysis

History :

✘ It has been introduced by Schumacher [1995] as “numerical approach” in
structural mechanics using circular holes and Neumann b.c.

✘ Sokolowski [1999]: extended this idea to more general function using the
adjoint method (case circular holes and Neumann b.c.).

✘ Masmoudi [2001]: introduced the Dirichlet condition case and given a more
general approach to compute the topological gradient.

More recently, it has been generalized for different PDE: Elasticity, Laplace,
Stokes, Helmholtz, Maxwell, Navier-Stokes, ....
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The Topological Sensitivity

Example: The Laplace operator admits an asymptotic expansion on the form

J (Ω\ωε)−J (Ω) = f (ε)δJ (z) + o(f (ε)).

The topological gradient δJ and the scalar function f (ε) are described by the
following table

B.C. on ∂ωε Topo. gradient δJ function f (ε)
2D Dirichlet 4πu0(z) v0(z) + δJ −1/ log(ε)

3D Dirichlet 6πu0(z) v0(z) + δJ ε

2D Neumann −2π∇u0(z).∇v0(z) + δJ ε2

3D Neumann −2π∇u0(z).∇v0(z) + δJ ε3

− u0 : solution to the Laplace operator, computed in the non perturbed domain.
− v0 : solution to the adjoint problem, computed in the non perturbed domain.

− the term δJ depends on the considered cost function.
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Topological Sensitivity analysis

It has been successfully used for various applications:
Structural mechanics:

Guarreau, Guillaume, Masmoudi (2001)
Maximization of the compliance for a 2D cantilever beam: The initial domain is a
plain rectangle with one edge clamped and a pointwise load is applied to the
middle of the opposite edge.
Aim : find the optimal domain with a volume less than 40% of the initial one.
Idea : sensitivity analysis w.r.t. remove small part of the domain
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Topological Sensitivity analysis

Image restoration: based on the edges detection.
Idea : edges are considered as a set of small craks.

Jaafar, Jaoua, Masmoudi, Siala (2006)
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Topological Sensitivity analysis

Fluid mechanics:

Hassine, Abdelwahed, Masmoudi (2008)
Aim : Find the optimal shape design of the tubes that connect the inlet to the
outlets of the cavity minimizing the dissipated power in the fluid.
Idea : sensitivity analysis w.r.t. inserting a small obstacle in the fluid flow
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Topological Sensitivity analysis

Main features of the topological gradient method:

1 No initial guess, with a priori poor information on the optimal shape.

2 It depends on solutions computed on the safe body.

3 It is fast and easy to be implemented.

4 The flaws location are characterized as the local minima of the topological
gradient δj .

b3

b2

1b

Exact locations Isovalues of δj

Mohamed Jaoua (Univ. Fran. Egypte) December 2014 14 / 28



Topological Sensitivity analysis for the Grad-Shafranov equation

Sensitivity analysis for the tracking function: Let ωε be a small geometry
perturbation inside the domain Ω with a Dirichlet boundary condition on ∂ωε.
The tracking function is defined by

T (Ω\ωε) =
∫

Γ
|ψε − ψm|2

where ψε satisfies the problem
Lψε = 0 in Ω\ωε,
1

r

∂ψε

∂n
= Φ on Γ,

ψε = 0 on ∂ωε.

Theorem: If ωε = X0 + εω ⊂ Ω where X0 ∈ Ω, ε > 0 and ω ⊂ R2 is a given,
regular and bounded domain containing the origin,
the tracking function T admits the following asymptotic expansion

T (Ω\ωε) = T (Ω)− 1

log(ε)
2π

x0
ψ0(X0) φ0(X0) + o(− 1

log(ε)
)

where φ0 is the solution to the associated adjoint problem.
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Topological Sensitivity analysis for the Grad-Shafranov equation

The topological sensitivity analysis for the Kohn-Vogelius function:
the Kohn-Vogelius function K is defined by

K(Ω \ωε) =
∫

Ω\ωε

1

r

∣∣∇ψε
N −∇ψε

D

∣∣2 dx ,

with ψε
N and ψε

D are the solutions to the Neumann and Dirichlet perturbed
problems

(P ε
N )


Lψε

N = 0 in Ω\ωε
1

r
∇ψε

Nn = Φ on Γ
ψε

N = 0 on ∂ωε,

(P ε
D )

 Lψε
D = 0 in Ω\ωε

ψε
D = ψm on Γ
ψε

D = 0 on ∂ωε.

Theorem: The function K admits the following asymptotic expansion

K(Ω \ωε) = K(Ω) +
−2π

log (ε)
1

x0

[∣∣∣ψ0
N (X0)

∣∣∣2 − ∣∣∣ψ0
D (X0)

∣∣∣2]
+ o(

−1

log (ε)
). (1)
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Numerical validation of the theoretical asymptotic expansion

For a given small perturbation ωz = z + εω ⊂ Ω, we will study the variation of
the function ∆z (ε)

∆z (ε) = j(Ωz,ε)− j(Ω)− δj(z), z ∈ Ω

with respect to ε.
We expect to prove numerically that the function ∆z satisfies the estimate

∆z (ε) = o(
−1

log(ε)
).

Denoting by β the parameter describing the behaviour of ∆z (ε) with respect to
−1

log(ε)
, i.e.

|∆z (ε)| = O(| −1

log(ε)
|β).

Then, β can be characterized as the slope of the line approximating the variation
of the function ε 7→ log(|∆z (ε)|) with respect to log(− log(ε)).
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Numerical validation of the theoretical asymptotic expansion

The tracking function : three locations ωi = X i
0 + εB(0, 1) ⊂ Ω, i = 1, 2, 3

have been tested, where Ω = B(X0, 1) with X0 = (2, 0).

Figure: Variation of log(|∆zi (ε)|), i = 1, ..., 3 with respect to log(− log(ε)).

The perturbation ω1 ω2 ω3

Location X i
0 X 1

0 = (1.5, 0.4) X 2
0 = (2.5, 0.3) X 3

0 = (1.8,−0.7)
The slope βi β1 = −1.01 β2 = −1.01 β3 = −1.03

Numerical simulations confirm the asymptotic expansion.
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Numerical validation of the theoretical asymptotic expansion

The Kohn-Vogelius function :

Figure: Variation of log(|∆zi (ε)|), i = 1, ..., 3 with respect to log(− log(ε)).

The perturbation ω1 ω2 ω3

The slope βi β1 = −1.35 β2 = −1.30 β3 = −1.60

Numerical simulations confirm the asymptotic expansion. A slight

superconvergence is observed.
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Plasma boundary reconstruction

One-shot algorithm:

Compute the topological sensitivity δj(x , y ), (x , y ) ∈ Ω,

determine the plasma location by

Ωp = {(x , y ) ∈ Ω; δj(x , y ) ≤ (1− ρ) gmin}

where gmin = min
(x ,y )∈Ω

δj(x , y ) and ρ ∈]0, 1[ is a heuristically determined

small parameter.
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Location of the plasma region from analytic data

Using the Tracking function :

Figure: Various locations of the plasma region

Figure: Various sizes of the plasma region

Flat isovalues =⇒ instability w.r.t. ε.
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Location of the plasma region from analytic data

Using the Kohn-Vogelius function :

Figure: Various locations of the plasma region

Figure: Various sizes of the plasma region

Sharp isovalues =⇒ stability w.r.t. ε.
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Location of the plasma region from non noisy synthetic data

Figure: Reconstruction using the tracking function

Drop the tracking function and use the Kohn-Vogelius one
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Reconstruction of smooth shapes using the KV function

Figure: Reconstruction of a circular and an elliptic shape

the Kohn-Vogelius function efficiently detects both the shape and the location of

smooth geometries.
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Reconstruction of corner shaped domains using the KV function

Figure: Reconstruction of shapes with corners

We detect efficiency the location and the shape of a rectangular domain.
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Reconstruction of non convex geometries

Figure: Reconstruction of a complex geometry

The algorithm locates the region, but fails in reconstructing its shape.
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Conclusions

The topological asymptotics provides us with

A fast algorithm to locate and reconstruct plasma regions in a
tokamak
Its accuracy is good for simple geometries, and quite poor for complex
ones
Might be enough however for real time applications, where

Features :

No need of a priori information on the location
One shot algorithm, no iterations
Once we get the measured data, computations are run on the safe
domain only

Prospects for a better accuracy:

Build an iterative algorithm using the topological asymptotics
Use the present algorithm as a first guess provider for some shape
optimization one ... however more expencive
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Thank you for your attention
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