ĻH²

Modelling and Simulation in Porous Media

Jenny

100

-100 0

200

Nui

Multi-scale and multi-physics modelling of flow and transport processes in porous media

Beatrix Becker, Martin Schneider, Markus Wolff, Benjamin Faigle, Bernd Flemisch, Rainer Helmig University of Stuttgart, Germany

In co-operation with

Ivar Aavatsmark (Uni. Bergen), Hamdi Tchelepi (Stanford University)

Need for Coupled Porous Media Models

Geothermal energy

Fracking fluid and salt water infiltration in groundwater?

Unconventional gas production

Fracking fluid and methane migration in groundwater?

Potential CO₂ storage site in northern Germany

- 40 km x 40 km site in northern Germany
- Injection depth: 1500m
- Injection rate:
 2.5 Mt/year
 (for 10 years)

How does the injection in structure A affect the pressure field in structure B?

Saturation and pressure distribution after 10 years

Complex Long-Term Processes: e.g. CO₂ Sequestration:

Simulation of long-term processes during CO₂ storage

(Darcis et al. 2014 WRR)

Classification of Model-Coupling Approaches

Multi-scale and multi-physics strategy

adaptive in space (multi-scale), adaptive in physics (multiphysics) + adaptive in time (multi-numerics)

Multi-scale Approaches

LH2

Model equations: Equations for two-phase flow

- Coupled system:
 - Continuity equation:
 - Darcy's law:

$$\phi \frac{\partial S_{\alpha}}{\partial t} + \nabla \cdot \mathbf{v}_{\alpha} = q_{\alpha} \qquad \alpha \in \{\mathsf{w}, \mathsf{n}\}$$
$$\mathbf{v}_{\alpha} = -\frac{k_{\mathsf{r}_{\alpha}}\mathbf{K}}{\mu_{\alpha}} \cdot [\nabla p_{\alpha} - \varrho_{\alpha}g\nabla z]$$

$$p_{\mathsf{C}} = p_{\mathsf{n}} - p_w$$

Demands on simulators

- Simulation of huge domains
- Fine resolution of heterogeneous parameters

Demands on simulators

- Simulation of huge domains
- Fine resolution of heterogeneous parameters
- Fine resolution of fluid fronts
- Complex physics
 - Focus: e.g. Two-phase flow including **capillary pressure effects**

Some examples (Capillary pressure effects)

Fine-scale reference: Effect of capillary pressure

 Capillary pressure heterogeneities can strongly affect the fluid distribution!

Demands on simulators

- Simulation of huge domains
- Fine resolution of heterogeneous parameters
- Fine resolution of fluid fronts
- Complex physics
 - Focus: Two-phase flow including capillary pressure effects

Problems:

- Large number of grid cells/
 Large number of degrees of freedom
- - Complex non-linear models

(M. Celia)

Demands on simulators

- Simulation of huge domains
- Fine resolution of heterogeneous parameters
- Fine resolution of fluid fronts
- Complex physics
 - Focus: Two-phase flow including capillary pressure effects

Problem:

- Large number of grid cells/
 Large number of degrees of freedom
- Complex non-linear systems/models

Solution Strategies:

- Multi-scale methods
 Simplified de-coupled
 - systems
 - Multi-physics methods

Multi-scale modeling of two-phase flow: State of the art

University of Stuttgart

Germanv

• Many powerfull approaches for the simplified case:

$$\nabla \cdot \left[-\lambda_{\mathsf{t}} \mathbf{K} \nabla p_{\mathsf{W}} \right] = q_{\mathsf{t}}$$

$$\phi \frac{\partial S_{\mathsf{W}}}{\partial t} + \nabla \cdot \mathbf{v}_{\mathsf{W}} = q_{\mathsf{W}}$$

- Multi-scale finite element approaches (e.g. Kippe et al., 2008, …)
- Multi-scale finite volume approaches (e.g. Lee et al., 2009, ...)
- Standard numerical upscaling/pseudo function approaches (e.g. Durlofsky,1991, Stone, 1991, Niessner etal 2009...)
- Adaptive upscaling methods (e.g. Chen and Li, 2009,...)

- Coupled system:
 - Continuity equation:
 - Darcy's law:

$$\phi \frac{\partial S_{\alpha}}{\partial t} + \nabla \cdot \mathbf{v}_{\alpha} = q_{\alpha} \qquad \alpha \in \{\mathsf{w}, \mathsf{n}\}$$
$$\mathbf{v}_{\alpha} = -\frac{k_{\mathsf{r}_{\alpha}}\mathbf{K}}{\mu_{\alpha}} \cdot [\nabla p_{\alpha} - \varrho_{\alpha}g\nabla z]$$

University of Stuttgart

Germany

- Reformulation → Decoupled equations:
 - Pressure equation:

$$\nabla \cdot [-\lambda_{t} \mathbf{K} \nabla p_{\mathsf{W}} - \lambda_{\mathsf{n}} \mathbf{K} \nabla p_{\mathsf{C}} - (\lambda_{\mathsf{W}} \rho_{\mathsf{W}} + \lambda_{\mathsf{n}} \rho_{\mathsf{n}}) \mathbf{K} g \nabla z] = q_{\mathsf{t}}$$
$$p_{\mathsf{C}} = p_{\mathsf{n}} - p_{w}$$

Transport equation:

$$\phi \frac{\partial S_{\mathsf{W}}}{\partial t} + \nabla \cdot \mathbf{v}_{\mathsf{W}} = q_{\mathsf{W}}$$

Multi-scale modeling modeling of two-phase flow

→ including capillary pressure

 $\nabla \cdot \left[-\lambda_{\mathsf{t}} \mathbf{K} \nabla p_{\mathsf{W}} \right] = q_{\mathsf{t}}$

$\nabla \cdot [-\lambda_{t} \mathbf{K} \nabla p_{\mathsf{W}} - \lambda_{\mathsf{n}} \mathbf{K} \nabla p_{\mathsf{C}} - (\lambda_{\mathsf{W}} \rho_{\mathsf{W}} + \lambda_{\mathsf{n}} \rho_{\mathsf{n}}) \mathbf{K} g \nabla z] = q_{\mathsf{t}}$ Outline part I

- Numerical upscaling
- Adaptive grid refinement
- Multi-scale modeling

Numerical Upscaling

- **Coarse scale equations:** \bullet $\phi^* - \partial S_{\alpha}$
 - Mass balance:

Darcy's law:

$$\frac{\partial S_{\alpha}}{\partial t} + \nabla \cdot \mathbf{v}_{\alpha} = q_{\alpha} \qquad \qquad \alpha \in \{\mathsf{w}, \mathsf{n}\}$$

 $\rho_{\alpha}g\nabla z$]

$$\mathbf{v}_{\alpha} = -\underbrace{\mathbf{K}_{\mathsf{tot}_{\alpha}}^{*}}_{\mu_{\alpha}} \cdot [\nabla p_{\alpha} -$$

- Choose representative subscale problems (problem setups)
- Calculate coarse scale quantities from (local) fine-scale \bullet simulations

Numerical Upscaling

- Coarse scale equations:
 - Mass balance:
 - Darcy's law:

$$\phi^* \frac{\partial S_{\alpha}}{\partial t} + \nabla \cdot \mathbf{v}_{\alpha} = q_{\alpha} \qquad \alpha \in \{\mathsf{w}, \mathsf{n}\}$$
$$\mathbf{v}_{\alpha} = \underbrace{\mathbf{K}_{\mathsf{r}_{\alpha}}^* \mathbf{K}^*}_{\mu_{\alpha}} \cdot [\nabla p_{\alpha} - \varrho_{\alpha} g \nabla z]$$

- Reformulation:
 - Pressure equation:

Transport equation:

$$\nabla \cdot \left[\begin{array}{c} \mathbf{\Lambda}_{t}^{*} \mathbf{K}^{*} \nabla \Phi_{\mathsf{W}} - \begin{array}{c} \mathbf{F}_{\mathsf{n}}^{*} \mathbf{\Lambda}_{t}^{*} \mathbf{K}^{*} \nabla \Phi_{\mathsf{c}}^{*} \right] = q_{\mathsf{t}} \\ \Phi_{\alpha} = p_{\alpha} + \varrho_{\alpha} gz \qquad \Phi_{\mathsf{c}} = \Phi_{\mathsf{n}} - \Phi_{w} \\ \phi^{*} \frac{\partial S_{\mathsf{W}}}{\partial t} + \nabla \cdot \mathbf{v}_{\mathsf{W}} = q_{\mathsf{W}} \end{array}$$

(Wolff et al. Treatment of tensorial relative permeabilities with multipoint flux approximation. *International journal of numerical analysis & modeling*, 2012)

Definition of the phase permeability tensor

$$\mathbf{K}_{\mathsf{tot}_{\alpha}}^* = \mathbf{K}^* \mathbf{K}_{\mathsf{r}_{\alpha}}^*$$

- Total and absolute permeability:
 - Second order tensors
- <u>Relative permeability:</u>
 - <u>Second order tensor</u> (e.g. *Nordbotten et al.* On the definition of macroscale pressure for multiphase flow in porous media, 2008)

Local numerical upscaling

LH2

Local steady state upscaling

- Calculate full absolute permeability tensor from local 1-p problems
 - e.g. Wen et al. 2003, ...

Local steady state upscaling

- Calculate full absolute permeability tensor from local 1-p problems
 - e.g. Wen et al. 2003, ...
- Calculate capillary pressure using a macroscale percolation approach
 - e.g. Braun et al 2005,

Local steady state upscaling:

(Braun et al. JCH 2005, Nuske et al WRR, 2010)

Local steady state upscaling

- Calculate full absolute permeability tensor from local 1-p problems
 - e.g. Wen et al. 2003, ...
- Calculate capillary pressure using a macroscale percolation approach
 - e.g. Braun et al 2005,
- Calculate full relative permeability tensor from local 2-p problems
 - Extention of Wen et al. 2003 for relative permeabilities

Local steady state upscaling:

Relative permeability upscaling

$$\begin{pmatrix} \Psi_{\alpha,x}^{x} & \Psi_{\alpha,y}^{x} & 0 & 0\\ 0 & 0 & \Psi_{\alpha,x}^{x} & \Psi_{\alpha,y}^{x}\\ \Psi_{\alpha,x}^{y} & \Psi_{\alpha,y}^{y} & 0 & 0\\ 0 & 0 & \Psi_{\alpha,x}^{y} & \Psi_{\alpha,y}^{y}\\ 0 & 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} K_{\text{tot}_{xx\alpha}}^{*}\\ K_{\text{tot}_{yx\alpha}}^{*}\\ K_{\text{tot}_{yy\alpha}}^{*} \end{pmatrix} = - \begin{pmatrix} \langle v_{\alpha_{x}} \rangle_{\alpha}^{x}\\ \langle v_{\alpha_{y}} \rangle_{\alpha}^{x}\\ \langle v_{\alpha_{x}} \rangle_{\alpha}^{y}\\ \langle v_{\alpha_{y}} \rangle_{\alpha}^{y}\\ 0 \end{pmatrix}$$

$$\Psi_{\alpha,x}^{x} = \frac{1}{\mu_{\alpha}} \frac{\partial}{\partial x} \langle \Phi_{\alpha} \rangle_{\alpha}^{x} \qquad \qquad \Psi_{\alpha,y}^{x} = \frac{1}{\mu_{\alpha}} \frac{\partial}{\partial y} \langle \Phi_{\alpha} \rangle_{\alpha}^{x}$$

$$\Psi^{y}_{\alpha,x} = \frac{1}{\mu_{\alpha}} \frac{\partial}{\partial x} \langle \Phi_{\alpha} \rangle^{y}_{\alpha} \qquad \qquad \Psi^{y}_{\alpha,y} = \frac{1}{\mu_{\alpha}} \frac{\partial}{\partial y} \langle \Phi_{\alpha} \rangle^{y}_{\alpha}$$

$$\mathbf{K}_r^* = \mathbf{K}_{\mathsf{tot}}^* \mathbf{K}^{*^{-1}}$$

LH2

Local steady state upscaling

- Calculate full absolute permeability tensor from local 1-p problems (e.g. Wen et al. 2003, ...)
- Calculate capillary pressure using a macroscale percolation approach (e.g. Braun et al 2005,)
- Calculate full relative permeability tensor from local 2-p problems (Extention of Wen et al. 2003 for relative permeabilities)
- Use effective flux boundary conditions to account for the global distribution of the heterogeneous parameters
- Permeability tensors are forced to be symmetric and positive definit (Avoid unphysical flow!)
- Continuous relative permeability curves are interpolated using monotone splines

Upscaled constitutive relations

Multi-scale = Upscaling + Downscaling

• Upscaling:

- From detailed information to less detailed information
- Information is thrown away
- Unique!

 \rightarrow A certain distribution has exact one average (unless the average operator is changed)

• Downscaling:

- From less detailed information to detailed information
- Information has to be generated!
- Non-unique!
 - \rightarrow What is the distribution to a certain average?

Downscaling of two-phase flow

- Small scale phase pressures and saturations have to be reconstructed from coarse scale information
- Problem 1: Phase pressure and saturation are coupled by capillary pressure
- Problem 2: Information about extreme values is lost/averaged at the coarse scale
- Local downscaling is not possible if capillary effects are important!?
- Global downscaling is not efficient!
- An adaptive grid is "a natural and efficient global downscaling strategy"!

Adaptive grid refinement

Numerical method:

- Cell centered finite volumes with multi-point flux approximation (MPFA L-method, e. g. Aavatsmark et al., 2008.)
 - Development of a MPFA L-method for two-phase flow including capillarity and gravity based on the decoupled formulation
 - ✓ Non-conforming refinement with hanging nodes (Faigle et al. CompGeo 2013)
 - ✓ Unstructured grids
 - Heterogeneities (e.g. Helmig and Huber, AWR 1999)
 - ✓Permeability, Porosity
 - ✓Capillary pressure (interface conditions)

The MPFA L-method

- 2d-quadrilaterals: Aavatsmark et al., Numer Meth Part D E, 2008
- Works on **unstructured** and **non-K-orthogonal** grids
- Correct treatment of grid block heterogeneities and material interfaces
- Maximum flux stencil: 9-point stencil (2-d), 18-point stencil (3d)

Adaptation examples: 1) Nine-spot water flood

0.6

0.4

Adaptation examples: 2) Low permeable lenses

Adaptation examples: 3) Anisotropic permeability

Adaptive grid refinement: Example (DNAPL infiltration)

- Two-phase flow with capillary pressure and gravity
- Homogeneous domain, anisotrop absolute and relative permeability

(Wolff et al. sub. DeGrutyer 2013)

Multi-Scale Modeling

Demands on simulators:

- Simulation of huge domains
- Fine resolution of heterogeneous parameters
- Fine resolution of fluid fronts
- Complex physics

Focus: Two-phase flow including capillary pressure effects

Multi-scale approach

- Combination of numerical upscaling and grid adaptive discretization schemes (Wolff et al. WRR 2013)
 - If a grid cell is on the finest level and fine-scale parameters/functions are available use these
 - Else use upscaled parameters/functions
- Control of the multi-scale behavior by choice of the adaption criterion!
 - Error control by **standard criteria**
 - e.g. saturation gradients, flux integrals, etc.
 - Error control by **multi-scale criteria**
 - Check if assumptions of the upscaling method are sufficiently satisfied (e.g. capillary equilibrium assumption → capillary number, etc.)

(Criteria)

- Standard mark element for $\begin{cases} \text{coarsening} &, \Delta S_{\text{local}} < \epsilon_{\text{coarsen}} \Delta S_{\text{max}} \\ \text{refinement} &, \Delta S_{\text{local}} > \epsilon_{\text{refine}} \Delta S_{\text{max}} \\ \text{nothing} &, \text{else} \end{cases}$
- Standard + ds/dt \rightarrow flux integral!
 - additional coarsening criterion

mark element for $\left\{ \text{coarsening} \quad , \left(\frac{\Delta S}{\Delta t} \right)_{\text{local}} < \epsilon_{\text{coarsen}} \right\}$

- Standard + multi-scale (only with capillary pressure):
 - Check if capillary equilibrium assumption for coarse scale parameters is valid

mark element for $\begin{cases} coarsening &, Ca_{local} < \epsilon_{coarsen} \\ refinement &, Ca_{local} > \epsilon_{refine} \end{cases}$

Multi-scale: Random permeability field

fine-scale reference

adaptive, multiscale, conservative refinement

adaptive, multiscale, intermediate refinement

wetting saturation

adaptive, multiscale, lax refinement

www.hydrosys.uni-stuttgart.de

SPE 10 Model 2 (Christie and Blunt, 2001)

Combination of all indicators

- One indicator which accounts for errors in the saturation transport (local sat gradient)
- One indicator which accounts for errors in the flow field (total velocity)
- Multi-scale: Permeability upscaling + adaptive grid

Solutions averaged to the coarse scale grid

Multi-scale: SPE 10

- Layer from bottom formation
- With capillary pressure

Refined for max. accuracy

scale solution

SPE 10 Model 2

Adaptive time discretization

Transport equations

Two-Phase Flow equations:

 \sim

Fractional Flow Formulation:

$$\phi \frac{\partial S_w}{\partial t} + \nabla \cdot v_w = q_w \qquad \nabla \cdot \left[-\lambda_t \mathbf{K} (\nabla \Phi_w + f_n \nabla \Phi_c) \right] = q_w + q_n$$
$$\phi \frac{\partial S_n}{\partial t} + \nabla \cdot v_n = q_n \qquad \qquad \phi \frac{\partial S_w}{\partial t} + \nabla \cdot v_w = q_w$$

Phase and Capillary Potential:

$$\Phi_{\alpha} = p_{\alpha} + \rho_{\alpha}gz, \ \alpha = w, n, \ \Phi_c = p_c + (\rho_n - \rho_w)gz$$

elliptic + parabolic equation

Fully Implicit Methods

Discretization of Fractional Flow Equation

IMPES

$$\mathbf{A}_{\Phi}(\mathbf{S}_w^n)\mathbf{\Phi}_w^{n+1} + \mathbf{A}_c(\mathbf{S}_w^n)\mathbf{\Phi}_c(\mathbf{S}_w^n) = \mathbf{Q}_{\Phi}^{n+1}$$

$$\mathbf{M}\frac{\mathbf{S}_{w}^{n+1} - \mathbf{S}_{w}^{n}}{\Delta t^{n}} + \mathbf{A}_{w}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{w}^{n+1} = \mathbf{Q}_{w}^{n+1}$$

FL

$$\mathbf{A}_{\Phi}(\mathbf{S}_{w}^{n+1})\mathbf{\Phi}_{w}^{n+1} + \mathbf{A}_{c}(\mathbf{S}_{w}^{n+1})\mathbf{\Phi}_{c}(\mathbf{S}_{w}^{n+1}) = \mathbf{Q}_{\Phi}^{n+1}$$

$$\mathbf{M}\frac{\mathbf{S}_{w}^{n+1} - \mathbf{S}_{w}^{n}}{\Delta t^{n}} + \mathbf{A}_{w}(\mathbf{S}_{w}^{n+1})\mathbf{\Phi}_{w}^{n+1} = \mathbf{Q}_{w}^{n+1}$$

Assumptions: no

Problems: convergence of solver

IMPSAT

IMPCAP

$$\mathbf{A}_{\Phi}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{w}^{n+1} + \mathbf{A}_{c}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{c}(\mathbf{S}_{w}^{n}) = \mathbf{Q}_{\Phi}^{n+1} \quad \mathbf{A}_{\Phi}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{w}^{n+1} + \mathbf{A}_{c}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{c}^{\operatorname{approx}}(\mathbf{S}_{w}^{n+1}) = \mathbf{Q}_{\Phi}^{n+1}$$
$$\mathbf{M}\frac{\mathbf{S}_{w}^{n+1} - \mathbf{S}_{w}^{n}}{\Delta t^{n}} + \mathbf{A}_{w}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{w}^{n+1} = \mathbf{Q}_{w}^{n+1} \qquad \mathbf{M}\frac{\mathbf{S}_{w}^{n+1} - \mathbf{S}_{w}^{n}}{\Delta t^{n}} + \mathbf{A}_{w}(\mathbf{S}_{w}^{n})\mathbf{\Phi}_{w}^{n+1} = \mathbf{Q}_{w}^{n+1}$$

Assumptions: weakly coupled Problems: time step restrictions Assumptions: weakly coupled Problems: CFL, expensive assembling

Comparison of Efficiency and Accuracy

SPE 10, Layer 15

Problem Setting $p_{w,min}$ $p_{w,min} = 20 \text{ MPa}$ $S_{w,init} = 0.0$ $p_{w,max} = 40 \text{ MPa}$ $p_{w,max} S_w = 1.0$

• similar results

• FI and IMPSAT: more numerical diffusion

Comparison of Efficiency and Accuracy

- IMPES fastest up to ~ 10^4 cells, lowest order
- IMPSAT faster than FI
- FI highest efficiency order

- All methods converge
- FI higher accuracy than IMPSAT
- Jocobian reassembling has no effect on accuracy

Problem with capillary pressure

Problem with capillary pressure

IMPSAT:

- Wrong front movement
- Assumption of weakly coupled equations is not fullfilled

IMPES:

- CFL Coats criteria produces small time step sizes
- Equations are only for small steps weakly coupled

IMPSAT + IMPCAP:

- Correct solution
- Bigger time step sizes are possible
- Loss of sparsity pattern for matrices

Motivation Adaptive Implicit Method (AIM)

For each numerical method you can design a poblem where it performs bad

Regions are changing per time, they move with the physical processes

www.hydrosys.uni-stuttgart.de

Two-phase flow with gravity and capillary pressure

 \mathcal{X}

More complex example

including gravity + capillary pressure

no optimal AIM example

Next Steps / Outlook

- Implementation of MPFA for AIM
- Further investigation of AIM approach
- Increase convergence of solver / better preconditioner:

$$\mathbf{R_1} = \mathbf{A}_{\Phi}(\mathbf{S}_w^{n+1})\mathbf{\Phi}_w^{n+1} + \mathbf{A}_c(\mathbf{S}_w^{n+1})\mathbf{\Phi}_c(\mathbf{S}_w^{n+1}) - \mathbf{Q}_{\Phi}^{n+1} \quad \text{elliptic}$$

$$\mathbf{R_2} = \mathbf{M} rac{\mathbf{S}_w^{n+1} - \mathbf{S}_w^n}{\Delta t^n} + \mathbf{A}_w(\mathbf{S}_w^{n+1}) \mathbf{\Phi}_w^{n+1} - \mathbf{Q}_w^{n+1}$$
 parabolic

$$\mathbf{X} = (\mathbf{P}_{\mathbf{w}}, \mathbf{S}_{\mathbf{w}}) \qquad \mathbf{J}_{\mathbf{R}} = \frac{\partial \mathbf{R}}{\partial \mathbf{X}} = \begin{pmatrix} \mathbf{A}_{\mathbf{1}, \mathbf{P}_{\mathbf{w}}} & \mathbf{A}_{\mathbf{1}, \mathbf{S}_{\mathbf{w}}} \\ \mathbf{A}_{\mathbf{2}, \mathbf{P}_{\mathbf{w}}} & \mathbf{A}_{\mathbf{2}, \mathbf{S}_{\mathbf{w}}} \end{pmatrix}$$

- use different preconditioner for elliptic and parabolic equation
- → CPR-AMG preconditioner

0.2505 0.24

0.2

0.1626

Johansen Formation

Summary – State of current work

- Adaptive grid refinement: Hanging nodes, MPFA Lmethod (3D)
- Numerical upscaling of phase permeabilities: tensorial relative permeabilities
- Treatment of tensorial relative permeabilities using MPFA
- **Multi-scale**: Combination of numerical upscaling and adaptive grid refinement

Future work:

- Adaptive time discretization (IMPES, sequential and fully implicit)
- Large scale simulation
- Include **multi-physics** concept (e.g. 3-phase 2-phase flow)

The End

References

Faigle B., et al. (2013): *Efficient multi-physics modelling with adaptive gridrefinement using a MPFA method,* Computational Geosciences, 2014

Wolff M., et al., *An adaptive multi-scale approach for modeling two-phase flow in porous media including capillary pressure*, Water Resour Res, 2013

Wolff M., et al., *Multi-point flux approximation L-method in 3D: numerical convergence and application to two-phase flow through porous media*, De Gruyter, 2013

Helmig, R., A. Ebigbo, M. Wolff, B. Flemisch, H. Class: Model coupling for multiphase flow in porous media. Advances in Water Resources, 2012.

Wolff M., et al., *Treatment of tensorial relative permeabilities with multipoint flux approximation*, Int J Numer Anal Mod, 2012

http://dune-project.org/