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Need for Coupled Porous Media Models

NAPL, ...

contaminations MUlti-thSiCS

“Direct” ground water
contamination?

Carbon dioxide,
methane storage

CO2, methane and salt water
infiltration in groundwater?

methods

methods

Radioactive
waste deposit

Radioactive contamination of
groundwater?

Geothermal
energy

Fracking fluid and
salt water infiltration in
groundwater?

Unconventional
gas production

Fracking fluid and
methane migration
in groundwater?
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Potential CO, storage site in northern Germany

* 40 km x 40 km site
In northern Germany
* Injection depth: 1500m
z * Injection rate:
P 2.5 Mtlyear
a0 (for 10 years)
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2000 How does the injection
|20 || in structure A affect the
1-2300 -
| -2400 pressure field
2600 | | in structure B?
-2700
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Structure B
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Structure A
Injection

(Walter et.al 2010)
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Saturation and pressure distribution after 10
years

CO, saturation Pressure increase
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Complex Long-Term Processes: e.g. CO, Sequestration:

Simulation of long-term processes during CO, storage

compositional
caprock caprock
f_ ~ ] processes

caprock

www.hydrosys.uni-stuttgart.de

multiphase mI =)
anomaly
flow

mineral reaction

geothermal
gradient

heat transport geochemistry

timescale several thousand years

(Darcis et al. 2014 WRR)
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Classification of Mod eI-CoupIing Approaches

[ Courtng (Helmig et al. 2012 AWR)
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Multi-scale and multi-physics strategy

Multi-physics =
methods

ulti-scale
methods

adaptive in space (multi-scale), adaptive in physics (multi-
physics) + adaptive in time (multi-numerics)
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Multi-scale Approaches
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Model equations: Equations for two-phase flow

e Coupled system: 95

— Continuity equation: qﬁﬁ + V- va = qa a € {w, n}
, kr, K
— Darcy’s law: Vg = — o, [Vpa — 009V z]
Mo

Pc — Pn — Pw



Institute for Modelling Hydraulic and Environmental Systems

www.hydrosys.uni-stuttgart.de

Dept. of Hydromechanics and Modelling of Hydrosystems

Demands on simulators

e Simulation of huge domains
* Fine resolution of heterogeneous parameters

University of Stuttgart
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Demands on simulators

Simulation of huge domains

Fine resolution of heterogeneous parameters

Fine resolution of fluid fronts

Complex physics

— Focus: e.g. Two-phase flow including capillary pressure effects
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Some examples (Capillary pressure effects)

=

< logarithm of permeability entry pressure
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Vorführender
Präsentationsnotizen
Die nächsten beiden Folien könnte man auch auf eine packen, dann wird es aber sehr klein
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Fine-scale reference: Effect of capillary pressure

e Capillary pressure heterogeneities can strongly affect the fluid
distribution!

wetting saturation weftting saturatfion

- www.hydrosys.uni-stuttgart.de
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Demands on simulators

e Simulation of huge domains
* Fine resolution of heterogeneous parameters
* Fine resolution of fluid fronts
e Complex physics
— Focus: Two-phase flow including capillary pressure effects

www.hydrosys.uni-stuttgart.de

Problems:

m=) |Large number of grid cells/
Large number of degrees of freedom

=) Complex non-linear models
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Computing Effort

niversity of Stuttgart

Fully coupled, Nonisothermal,
highly resolved 3-D Multi-phase
Multi-component models

(Parallel Numerical Algorithms)

De-coupled, simplified 3-D
Multi-phase models

(Quasi 3-D) Models

Vertically Integrated 2-D

V4

Simplified Vertically
Integrated Models

(Analytical Solutions)

Model Complexity

(M. Celia)
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Demands on simulators

e Simulation of huge domains
* Fine resolution of heterogeneous parameters
* Fine resolution of fluid fronts
e Complex physics
— Focus: Two-phase flow including capillary pressure effects

www.hydrosys.uni-stuttgart.de

Problem: Solution Strategies:
=) Large number of grid cells/ [ Multi-scale methods
Large number of degrees of 7 .
Simplified de-coupled
freedom -

systems
==) Complex non-linear

systems/models Multi-physics methods
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Multi-scale modeling of two-phase flow: State of the art

 Many powerfull approaches for the simplified case:
V- [-MKVpw] = gt

OSw
4 V-ovw =
6’5 Py, Vw qw

e Multi-scale finite element approaches (e.g. Kippe et al.,

www.hydrosys.uni-stuttgart.de

2008, ...)
* Multi-scale finite volume approaches (e.g. Lee et al., 2009,
)

e Standard numerical upscaling/pseudo function approaches
(e.g. Durlofsky,1991, Stone, 1991, Niessner etal 2009...)

e Adaptive upscaling methods (e.g. Chen and Li, 2009,...)
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Model equations: Equations for two-phase flow

e Coupled system:

— Continuity equation: ¢% + V- va = qa a € {w, n}
ot

_ ’ : kr K
Darcy’s law: v, = —_Ta
Ha

 Reformulation = Decoupled equations:
— Pressure equation:

- [Vpa — 009V 2]

V- [=2KVpw — A\nKVpe — (Awpw + Anpn)K gVz] = gt

Pc — Pn — Pw
— Transport equation:

OSw
T4 Vovw =
@’5 Py, Vw qw
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Multi-scale modeling modeling of two-phase flow

- including capillary pressure
V- [-AtKVpw] = ¢¢

\ 4

www.hydrosys.uni-stuttgart.de

V: [=AtKVpw — — (Awpw + Anpn)K gVz] = gt
Outline part |
 Numerical upscaling
e Adaptive grid refinement

e Multi-scale modeling
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Numerical Upscaling

e Coarse scale equations:
,0So

— Mass balance: ) rr + V- va = qa a € {w, n}
— Darcy’s law: Vo = _ - [Vpa — 009V 2]

* Choose representative subscale problems (problem
setups)

e Calculate coarse scale quantities from (local) fine-scale
simulations
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Numerical Upscaling

e Coarse scale equations:

= . oS

5 — Mass balance: ¢*8_t0‘ +V Vo = qa a € {w, n}

g — Darcy’s law: Vo : [VPa — 0agV 2]

g o

;3 e Reformulation:

% — Pressure equation: %
V| <Dw V‘Dc] = qt
¢a=Pa+Qa9Z P = Py — Py,

— Transport equation:

OSw
4V v =
Cb Py Vw qw

(Wolff et al. Treatment of tensorial relative permeabilities with multipoint flux
approximation. International journal of numerical analysis & modeling, 2012)
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Definition of the phase permeability tensor

K’?ota — K*K?ka
 Total and absolute permeability:
— Second order tensors
e Relative permeability:

— Second order tensor (e.g. Nordbotten et al. On the definition of
macroscale pressure for multiphase flow in porous media, 2008)

* % % * * *
ka:m k:r;y ka:z Fex  "Nzy "lez 3.0
* * * * * * * -
kz.’E kzy kzz krzaj krzy krzz
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Local numerical upscaling

logarithm of permeability
S boundary
= 8 conditions ]
o) ~N
§ :'9 p p
(%)) = | _—]
S —-10 A
(7] =
@ :
= =11 P 7
e B _ - . .
Ef local sub-domain (fine grid) /
% -12 global (coarse) grid



Vorführender
Präsentationsnotizen
Diese Folie könnte man auch raus nehmen
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Local steady state upscaling

e Calculate full absolute permeability tensor from local 1-p
problems

— e.g. Wen et al. 2003, ...



Institute for Modelling Hydraulic and Environmental Systems

www.hydrosys.uni-stuttgart.de

i . i ity of Stuttgart
Dept. of Hydromechanics and Modelling of Hydrosystems r:wers' e

ermany

Local steady state upscaling

e Calculate full absolute permeability tensor from local 1-p
problems

— e.g. Wen et al. 2003, ...

e Calculate capillary pressure using a macroscale percolation
approach

— e.g. Braun et al 2005, ....
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Assumption:

= Perculation
approach

\ 4

Saturation distribution

\ ¢

Capillary pressure

= Averaging

PE = pp — Pw

local capillary equilibrium ~~

University of Stuttgart

= — H‘:;:}u
ffﬁ?-(: —— coarse scale
\ -~>/,/—

global model scale

fine scale

sub-model scale

(Braun et al. JCH 2005, Nuske et al WRR, 2010)
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Local steady state upscaling

Calculate full absolute permeability tensor from local 1-p
problems

— e.g. Wen et al. 2003, ...

Calculate capillary pressure using a macroscale percolation
approach

— e.g. Braun et al 2005, ....

Calculate full relative permeability tensor from local 2-p
problems

— Extention of Wen et al. 2003 for relative permeabilities
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= Perculation
approach ‘
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Local steady state upscaling:
K*
:

Assumption:
local capillary equilibrium

T—
d::_:-a-.h
— \%‘““H.,_‘

e

Germany

— coarse scale

Saturation distribution I global model scale
Solve local
two-phase flow fine scale
problem
Flow field |

Averaging ‘ Kf = Ki‘c‘otK"‘1

Relative permeability
tensor

sub-model scale
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Relative permeability upscaling

(wac g 0 0 K* ((Uozx>g\
QLT a,y i i ( tOt:csca\ T
\ng T Wg,y 0 0 KX Yo [ =~ <U0ém>:g4
Yy Yy tot Yy
O O wa,x Wa7y K* YTy <fvay>
L0 1 -1 0 ) \“toty,/ oY
1 0 1 0
1 0 1 0
Who=— —(®a)l Why=— — (®a)]

niversity of Stuttgart
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Local steady state upscaling

e Calculate full absolute permeability tensor from local 1-p
problems (e.g. Wen et al. 2003, ...)

e Calculate capillary pressure using a macroscale percolation approach (e.g.
Braun et al 2005, ....)

e Calculate full relative permeability tensor from local 2-p
problems (Extention of Wen et al. 2003 for relative permeabilities)

» Use effective flux boundary conditions to account for the global
distribution of the heterogeneous parameters

 Permeability tensors are forced to be symmetric and positive
definit (Avoid unphysical flow!)

 Continuous relative permeability curves are interpolated using
monotone splines

www.hydrosys.uni-stuttgart.de
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Upscaled constitutive relations
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Vorführender
Präsentationsnotizen
Die könnte man raus nehmen
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Multi-scale = Upscaling + Downscaling

e Upscaling:
— From detailed information to less detailed information
— Information is thrown away
— Unique!

—> A certain distribution has exact one average (unless the average
operator is changed)

e Downscaling:

— From less detailed information to detailed information
— Information has to be generated!
— Non-unique!

- What is the distribution to a certain average?
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Downscaling of two-phase flow

Smalll scale phase pressures and saturations have to be
reconstructed from coarse scale information

Problem 1: Phase pressure and saturation are coupled by
capillary pressure

Problem 2: Information about extreme values is
lost/averaged at the coarse scale

Local downscaling is not possible if capillary effects are
Important!?

Global downscaling is not efficient!

An adaptive grid is “a natural and efficient global
downscaling strategy”!
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Adaptive grid refinement

Numerical method:

— Cell centered finite volumes with multi-point flux approximation
(MPFA L-method, e. g. Aavatsmark et al., 2008.)

==) Development of a MPFA L-method for two-phase flow including
capillarity and gravity based on the decoupled formulation

v"Non-conforming refinement with hanging nodes (raigle et al.
CompGeo 2013)

v Unstructured grids

— Heterogeneities (e.g. Helmig and Huber, AWR 1999)
v'Permealbility, Porosity

v’ Capillary pressure (interface conditions)

www.hydrosys.uni-stuttgart.de
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The MPFA L-method

2d-quadrilaterals: Aavatsmark et al., Numer Meth Part D E, 2008
Works on unstructured and non-K-orthogonal grids

Correct treatment of grid block heterogeneities and material interfaces
Maximum flux stencil: 9-point stencil (2-d), 18-point stencil (3d)

Two possible L-stencils
for flux approximation
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Adaptation examples: 3) Anisotropic permeability

1010 0 5 x 1011
K = 0 1010 5x 10~11 | m?
5x101 5x 101! 5x101!

n

www.hydrosys.uni-stuttgart.de
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phase flow with capillary pressure and gravity
e Homogeneous domain, anisotrop absolute and relative

(Wolff et al. sub. DeGrutyer 2013)

permeability
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Adaptive grid refinement: Example (DNAPL infiltration)

ap rebnnis-un‘sAsolpAy mmm



"'Hz Dep -' '; € -. -.0 ode ‘.; .‘. = _ -. .

Multi-Scale Modeling

Demands on simulators:
= Simulation of huge domains
= Fine resolution of heterogeneous parameters

"  Fine resolution of fluid fronts
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=  Complex physics
= Focus: Two-phase flow including capillary pressure effects
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Vorführender
Präsentationsnotizen
Diese Folie ist nur als Überleitung gedacht
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Multi-scale approach

e Combination of numerical upscaling and grid adaptive
discretization schemes (Wolff et al. WRR 2013)

— If a grid cell is on the finest level and fine-scale parameters/functions
are available use these

— Else use upscaled parameters/functions

e Control of the multi-scale behavior by choice of the
adaption criterion!

— Error control by standard criteria

e e.g. saturation gradients, flux integrals, etc.
— Error control by multi-scale criteria

e Check if assumptions of the upscaling method are
sufficiently satisfied (e.g. capillary equilibrium
assumption - capillary number, etc.)



(Criteria)

e Standard (coarsening

, AS|ocal < €coarsenASmax
mark element for < refinement

, AS|ocal > €refineA Smax
 .nothing ,else

e Standard + ds/dt = flux integral!
— additional coarsening criterion
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mark element for {coarsening : (%—f)local < €coarsen

e Standard + multi-scale (only with capillary pressure):

— Check if capillary equilibrium assumption for coarse scale
parameters is valid

coarsening
refinement

mark element for{ , Cajocal < €coarsen

,Cajocal > €refine



Vorführender
Präsentationsnotizen
Die thresholds müssen natürlich in der Regel für die unterschiedlichen Kriterien auch unterschiedlich gewählt werden!
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Multi-scale: Random permeability field

weftting saturation wetting saturatior

~0.75
—:0.5
-_:[1.25
) 8 M‘?“&- ; - 3 DF
fine-scale reference  adaptive, multi- adaptive, multi- adaptive, multi-
scale, conservative scale, intermediate scale, lax
refinement refinement refinement
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Combination of all indicators

! “ E‘;‘;

E'o.25
One Indicator which Fine Sca'e Multl -scale

) impes (MPFA)
accounts for errors in the I
Solutions averaged

flow field (total velocity)
to the coarse scale

Hm

One indicator which
accounts for errors in the
saturation transport (local
sat gradient)

Multi-scale: Permeability
upscaling + adaptive grid



Vorführender
Präsentationsnotizen
Conclusion: Combine both indicators!
One indicator which accounts for errors in the saturation transport (local sat gradient)
One indicator which accounts for errors in the flow field (total velocity)
 Multi-scale: Permeability upscaling + adaptive grid



Multi-scale: SPE 10
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Vorführender
Präsentationsnotizen
Max. accuracy bedeuted sehr strenges Vergröberungskriterium -> Standard-Kriterium

Higher efficiency bedeuted möglichst viel vergröbern -> Mulit-Scale-Kriterium (Check local Ca)

Die heterogenen Eindringdrücke habe ich durch eine Skalierung mit Permeabilität und Porosität erhalten (Leverett-J-function). 

Die tiefere SPE10 Formation ist wie man sieht die mit den vielen Channels. Ich habe einfach irgendeine ausgewählt (layer 50)
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Adaptive time discretization

~
{ Coupling J
P N

o
"
) /
1=
E ( _ \
7 <
G Temporal [ Spatial ]
= = 7
2
0 Model B
e
o
>
o
: t
T /
[ Volume ] [ Surface ]
Multi- _ Muilti- Multi-
process Multi-scale dimension compartment
q g VA, Interface
! I [/ [ /.
Process B ! A Mc:;iel
L Do D Model
5 : R / A B
\ /Process A ! P FFFFFS N >
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Transport equations

Two-Phase Flow equations: Fractional Flow Formulation:

0S.,
=t V VU = Gu V[~ MK(VP, + fuVP.)] = quw + qn

Phase and Capillary Potential:

(I)oe — P« —+ Padz, O — W, T, (I)C — Pe + (p?’b T /Ow)gz

elliptic + parabolic equation

l l

Fully Implicit Methods Sequential Methods
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Discretization of Fractional Flow Equation

IMPES FI

Aa(S)PLT + AL(SE)P(SE) = Qi As(SET)@LT HALSTHR(S)T) = Qi
Sﬂ,—l—] _ Qn Sn—H _ Qqn _

M=t 20 AL (S = Q! M= AL(S DR = Q!

Assumptions: equations are weakly coupled Assumptions: no

Problems: CFL restrictions Problems: convergence of solver

IMPSAT

IMPCAP

Aa(SL)P0 + A(SL)P(S]) = Qi Aa(SL)PLT + AL(ST) (ST = QY
syt sy . Syt — sy .

M=+ A (S e = Qi M=t + A (S @ = Qi

Assumptions: weakly coupled Assumptions: weakly coupled

Problems: time step restrictions Problems: CFL, expensive assembling
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Comparison of Efficiency and Accuracy

SPE 10, Layer 15 Problem Setting

Pw,min

pw,’m,in == 20 MPa
Sw.init = 0.0 pw,’m,ax — 40 MPa

(a) (b ©
(a) porosity (b) permeability  (c) entry pressure gI Pwomax Sy — 1.0
T

www.hydrosys.uni-stuttgart.de

Solution without capillary pressure:
IMPES IMPSAT FI
* similar results
* Fl and IMPSAT: more numerical

diffusion
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Comparison of Efficiency and Accuracy

efficiency
10 .
[}
"
=t 8l
S )
£ = |IMPES fastest up to £ 6l
g ~ 1074 cells, lowest order 3 +IMPSAT2)
2 = |IMPSAT faster than Fl o ::mgggﬁ
7 = FI highest efficiency order 3 . oFl
S .
: - 3 4 5 6
refinement factor
accurac
0.1 . y
= All methods converge S 0.08 -
= FI higher accuracy than ® 0.0d S |
IMPSAT — S +IMPSAT2
: : Do N - ‘ = IMPSAT1
* Jocobian reassembling has 9004 ™S ~IMPES |
no effect on accuracy 2 oo :A-Fl
% 3 4 5 6

refinement factor
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Problem with capillary pressure

SPE 10, Layer 15 Problem Setting

Pw,min
1
FA
f WE]

s L02
. E:ﬁl

) i | .:
(a) porosity (b) permeability  (c) entry pressure Yy L’pwlmax S, — 1.0
xr

log &

-1U.¢

Pw,min — 25 MPa
S it = 0.0 Pw,max = 26 MPa
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Problem with capillary pressure

Problem Setting

IMPSAT -
IMPSAT IMPES  + IMPCAP ’
Si”
0959'; pw,ﬂnn — 25 MPa
f0.8
é[]_é Sw.init = 0.0 p'w.'m,a.:t: _— 26 h”{[Pa
0.4 )

En.z
0.

Y Pwmax Sy = 1.0
€T

IMPSAT: IMPES: IMPSAT + IMPCAP:

» Wrong front movement  CFL Coats criteria produces +« Correct solution

e Assumption of weakly small time step sizes * Bigger time step sizes are
coupled equations isnot < [Equations are only for small possible
fullfilled steps weakly coupled » Loss of sparsity pattern for

matrices
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Regions are changing per time, they move with the physical processes



Institute for Modelling Hydraulic and Environmental Systems

i . Uni ity of Stuttgart
Dept. of Hydromechanics and Modelling of Hydrosystems s

Two-phase flow with gravity and capillary
pressure

(D)

o

S Sw

=

*clﬁ Sw

< 991

=

% 50'8

o 0.6

=] 0.4
2

S 19

% 1e-17
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More complex example

including gravity + capillary pressure

Sw
991 ‘ Topu ‘ At average ‘ time steps
0.8 "INPES | ~ 88h | 0.035h 112928

‘0.6
0.4 AIM ~ 0.6h 32h 125

Tk

-1e-17

www.hydrosys.uni-stuttgart.de

no optimal AIM example
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Next Steps / Outlook

* Implementation of MPFA for AIM
* Further investigation of AIM approach
* Increase convergence of solver / better preconditioner:

Ry = Aa(SU @ + A(ST)@c(ST) — Q™ elliptic
Sptl . gn

Ro =M w N wo Aw(S::;+1)(I)::}+1 o Q:ﬁ_l parabolic

B ~OR  [(Aip, Ais,

—> use different preconditioner for elliptic and parabolic equation

—» CPR-AMG preconditioner
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Johansen Formation

water saturation
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Summary — State of current work

 Adaptive grid refinement: Hanging nodes, MPFA L-
method (3D)

* Numerical upscaling of phase permeabillities: tensorial
relative permeabilities

 Treatment of tensorial relative permeabilities using
MPFA

 Multi-scale: Combination of numerical upscaling and
adaptive grid refinement

Future work:
* Adaptive time discretization (IMPES, sequential and
fully implicit)
* Large scale simulation
* Include multi-physics concept (e.g. 3-phase — 2-phase flow)

www.hydrosys.uni-stuttgart.de
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