V. Martin, J. Jaffré, and J. E. Roberts, "Modeling fractures and barriers as interfaces for flow in porous media," *SIAM Journal on Scientific Computing* 26 5 (2005) pp 1667-1691 MODELING FRACTURES AND BARRIERS 1677 Ω_1 Ω_2 Ω_2 Ω_1 Ω_2 Ω_1 Ω_2 Ω_2 Ω_1 Ω_2 Ω_2 Ω_1 Ω_2 Ω_2 Ω_3 Ω_1 Ω_2 Ω_2 Ω_3 Ω_2 Ω_1 Ω_2 Ω_2 Ω_3 Ω_2 Ω_1 Ω_2 Ω_2 Ω_3 Ω_2 Ω_3 Ω_2 Ω_3 Ω_2 Ω_3 Ω_2 Ω_3 Ω_2 Ω_3 Ω_3 Ω_2 Ω_3 Ω_3 Ω_3

FIG. 5.1. Left: The domain Ω with a two-dimensional fracture Ω_f that is meshed with rectangles. Right: The one-dimensional fracture γ is meshed with the projection of the two-dimensional mesh on γ_1 (or γ_2).

Г

Role of flow models and simulations for assessing waste disposal and recoverable resources in FRACTURED MEDIA Jean-Raynald de Dreuzy¹, Caroline Darcel², Philippe Davy¹, Jocelyne Erhel³, Romain Le Goc², Julien Maillot^{1,2}, Yves Meheust¹

San Andreas Fault System

Géraldine Pichot³, Baptiste Poirriez³

Geosciences Rennes, UMR CNRS 6. C. Univeristy of Rennes 1, Rennes, France.
 Itasca Consultants S. A., Group IICItasca, Rennes, France.
 IRISA/INRIA, Rennes, France.

What is a fracture?

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaclase
 - Plate tectonics, sismology

What is a fracture?

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaclase
 - Plate tectonics, sismology
- Mathematical modeling
 - 2D features in 3D space (lower dimensionality)
- Hydraulics

FIG. 5.1. Left: The domain Ω with a two-dimensional fracture Ω_f that is meshed with rectangles. Right: The one-dimensional fracture γ is meshed with the projection of the two-dimensional mesh on γ_1 (or γ_2). Martin, V., et al. (2005), Modeling fractures and barriers as with a mixed of the two-dimensional in model, Corriging for the two-dimensional for the two-dimensional methods. SIAM Journal in model, Corriging for the two-dimensional for the two-dimensional for the two-dimensional methods.

Fractures, Water Resources Research 8/44(80,513115.

What is a fracture?

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaclase
 - Plate tectonics, sismology
- Mathematical modeling
 - 2D features in 3D space (lower dimensionality)
- Hydraulics
 - Flow barriers, flow highways
 - High permeablity, low storati
 - Low surface/volume features
- Mechanics
 - Dynamic, Chaotic
 - Energy dissipation
- Physics
 - Statistics, emergence

- Fractures (more generally geological complexity)
 - Source of uncertainty
 - Coexistence of services (storage, resources, environment)
- Requires CONTROL
 - Observations, Monitoring
 - Modeling
 - Data processing, calibration, assimilation

Stochastic models of fracture networks

Odling, N. E. (1997), Scaling and connectivity of joint systems in sandstones from western Norway, Journal of Structural Geology, 19(10), 1257-1271. Bour, O., et al. (2002), A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network

(Hornelen Basin, Norway), Journal of Geophysical Research, 107(B6).

6

Scale evolving 3D structures

Broad power-law length distribution $n(I) \sim I^{-a}$ with $I_{min} < I < L$ Large number of fractures: $\sim 10^3$ to 10^5

Models of fluid flow in fracture networks

Permeability increase with scale

Flow structures in natural fractured media Multiple-scale Channeling and limited permeability

FRACTURE SCALE

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical) NETWORK SCALE
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

FRACTURE SCALE

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical) NETWORK SCALE
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

Méheust, Y., and J. Schmittbuhl (2001), Geometrical heterogeneities and permeability anisotropy of rough fractures, Journal of Geophysical Research-Solid Earth, 106(B2), 2089-2102.

From local aperture to local transmissivity

Fracture aperture and transmissivity distribution shown by dashed and solid lines respectively.

Effective permeability K_A normalized by the equivalent parallel plate permeability K_1

FRACTURE SCALE

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical) NETWORK SCALE
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

2D Poissonian fracture networks

a. length distribution parameter *d.* density parameter $\sigma^2(\log K_1)$: fracture log-permeability variance

de Dreuzy, J. R., et al. (2001a), Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2-Permeability of networks based on log-normal distribution of apertures, Water Resources Research, 37(8), 2079-2095 de Dreuzy, J. R., et al. (2001b), Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1-Effective connectivity, Water Resources Research, 37(8). de Dreuzy, J. R., et al. (2002), Permeability of 2D fracture networks with power-law distributions of length and aperture, Water Resources Research, 38(12).

FRACTURE SCALE: reduction factor of 2 to 4 at most

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)
- NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

COMBINATION FRACTURE/NETWORK

Combined fracture- and network-scale effects

Fracture Network

Flows with uniform apertures K_N Flows with distributed apertures K_{N+A}

de Dreuzy, J.-R., Y. Méheust, and G. Pichot (2012), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP.

Additional reduction by a factor of 2 to 3

23

Additional reduction by a factor of 5 to 10

FRACTURE SCALE: reduction factor of 2 to 4 at most

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures

- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10

FRACTURE SCALE: reduction factor of 2 to 4 at most

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures

- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization) COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10

Mechanical induced organization of the fracture network (preliminary results)

Reduction factor of K.3 to 10

FRACTURE SCALE: reduction factor of 2 to 4 at most

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical) NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical correlation patterns: reduction factor of 3 to 10 COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10

Reduction factor of K:2 to 4

With an analytical image method adapted from Long [1985]

FRACTURE SCALE: reduction factor of 2 to 4 at most

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)

NETWORK SCALE: bottle necks versus large fractures

- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections): reduction factor of 2 to 3
- Mechanical correlation patterns: reduction factor of 3 to 10
 COMBINATION FRACTURE/NETWORK: reduction factor of 2 to 10

Conclusions

Model permeability of fractured media is generally too large

- Dense " Poissonian" connection create too many parallel paths
- Roughness keeps large transmissivity (keeping fractures open)

Classical reduction factors of permeability are not enough

- Roughness does not create bottle necks or disconnection
- Lack of network connectivity cannot balance large fractures

Channeling and permeability limitations come from the combination of fracture characteristics at different scales

- Mechanical organization limits connectivity and creates bottle necks
- Further limitation induced by fracture roughness, intersection length and transmissivity
- Overall potential reductions of permeability by 1 to 3 orders of magnitude

FRACTURE SCALE

- Fracture roughness
- Fracture sealing/dissolution (chemistry)
- Fracture closing/opening (mechanical)
- NETWORK SCALE: bottle necks versus large fractures
- Fracture length distribution
- Global connectivity (network effects)
- Effective transmissivity variability (orientations, depth)
- Local connectivity (intersections)
- Mechanical-issued correlation patterns (fracture organization)

http://www.imstunnel.com/page_03.htm

Pathways from produced shales to aquifers Artificial and Natural Fractures

✓ Geological formation

Fractures: double-sided risk and opportunity

- Geology
 - Ubiquitous: Fault, Fracture, Joint, Diaclase
 - Plate tectonics, sismology
- Mathematical modeling
 - 2D features in 3D space (lower dimensionality)
- Hydraulics
 - High permeablity, low storativity
 - Flow channels, flow barriers
 - Low surface/volume features
- Mechanics
 - Dynamical, "chaotic " process
 - Plastic deformation, rupture
 - Material science, Failure
- Management
 - Issue
 - Risk (Nuclear waste disposal)
- Google
 - Health issue

Connection by short fractures Percolation theory

Stauffer, D., and A. Aharony (1992), Introduction to percolation theory, second edition, Taylor and Francis, Bristol.

Classics of percolation

- ✓ Connectivity is intrinsic
- ✓ Second-order phase transition
- ✓ Fractal structure
- ✓ Statistical theory

206 B. Gylling et al. / Journal of Contaminant Hydrology 32 (1998) 203-222

Fig. 2. All the major fracture zones found at Äspö visualized as planes. The distances on the axes are in km.

Model: Network structure

Combined effects of fracture aperture and network structure on equivalent permeability?

Bottlenecks