Total Differential interpolation
of Two-phase Data
for Three-phase Compressible Flows

Guy Chavent *
Raphaël DiChiara-Roupert**
Gerhard Schäfer**

* CEREMADE, Université Paris-Dauphine, and INRIA-Rocquencourt
** LYGES, EOST Strasbourg
Summary

• Three-phase compressible equations
• Choice of pressure unknown: water, oil or gas versus global?
• TD-condition \Leftrightarrow existence of a global capillary function P_{cg}
• Interpolation of TD-three-phase data from two-phase data
• Numerical results
• Conclusions
Three-phase Compressible equations

- Classical resolution (1=water, 2=oil, 3=gas):

 solve for the oil pressure P_2 the “pressure equation”:

 \[
 \frac{\partial}{\partial t} \left\{ \phi \sum_{j=1}^{3} B_j S_j \right\} + \nabla \cdot q = 0,
 \]

 where q is the global volumetric flow vector:

 \[
 q = \sum_{j=1}^{3} \varphi_j = -K d \left\{ \nabla P_2 + f_1 \nabla P_{c1}^{12} + f_3 \nabla P_{c3}^{32} - \rho g \nabla Z \right\}
 \]

 \[
 \left\{
 \begin{array}{l}
 d(s_1, s_3, p_2) = \sum_{j=1}^{3} kr_j d_j = \text{global mobility}, \\
 f_j(s_1, s_3, p_2) = kr_j d_j / \lambda = j^{th} \text{ fractional flow}, \sum_{j=1}^{3} f_j = 1, \\
 \rho(s_1, s_3, p_2) = \sum_{j=1}^{3} f_j \rho_j = \text{global density}.
 \end{array}
 \right.
 \]
Three-phase Compressible equations

- Classical resolution (1=water, 2=oil, 3=gas):

 solve for the oil pressure P_2 the “pressure equation”:

 $$\frac{\partial}{\partial t}\{\phi \sum_{j=1}^{3} B_j S_j\} + \nabla \cdot q = 0,$$

 where q is the global volumetric flow vector:

 $$q = \sum_{j=1}^{3} \varphi_j = -Kd\{\nabla P_2 + f_1 \nabla P_c^{12} + f_3 \nabla P_c^{32} - \rho g \nabla Z\}$$

 \[
 \begin{aligned}
 d(s_1, s_3, p_2) &= \sum_{j=1}^{3} kr_j d_j = \textit{global mobility}, \\
 f_j(s_1, s_3, p_2) &= kr_j d_j / \lambda = j^{th} \textit{fractional flow} , \sum_{j=1}^{3} f_j = 1, \\
 \rho(s_1, s_3, p_2) &= \sum_{j=1}^{3} f_j \rho_j = \textit{global density}.
 \end{aligned}
 \]

 Is oil pressure a better unknown than water or gas pressure?

Pressure unknown: water, oil or gas? (1)

- Capillary pressures (Van Genuchten):

 they depend only on the wetting phase saturation!

\[
\text{top: } P_{c}^{32} = P_{gas} - P_{oil}
\]

\[
\text{bottom: } P_{c}^{12} = P_{water} - P_{oil}
\]
Does there exist a pressure field \((x, t) \rightarrow P\) such that:

Happy retirement Jean and Jérôme!
Let us have a dream...

- Does there exist a pressure field \((x, t) \mapsto P\) such that:

 \[
P \text{ is smooth}, \quad P_{\text{water}} \leq P \leq P_{\text{oil}}
 \]
Does there exist a pressure field \((x, t) \mapsto P\) such that:

- \(P\) is smooth
- \(P_{\text{water}} \leq P \leq P_{\text{oil}}\)

and \(P\) governs the global volumetric flow vector \(q\):

\[
q = -Kd(s_1, s_3, P)\{\nabla P - \rho g \nabla Z\}
\]
Let us have a dream...

- Does there exist a pressure field \((x, t) \mapsto P\) such that:

 \[P \text{ is smooth}, \quad P_{\text{water}} \leq P \leq P_{\text{oil}} \]

 and \(P\) governs the global volumetric flow vector \(q\):

 \[q = -Kd(s_1, s_3, p)\left\{ (1 - \partial P_{cg}/\partial P) \nabla P - \rho g \nabla Z \right\} \]

Let us have a dream...

- Does there exist a pressure field \((x, t) \rightarrow P\) such that:

 \[P \text{ is smooth}, \quad P_{\text{water}} \leq P \leq P_{\text{oil}} \]

 and \(P\) governs the global volumetric flow vector \(q\):

 \[q = -Kd(s_1, s_3, p) \left\{ (1 - \partial P_{cg}/\partial P) \nabla P - \rho g \nabla Z \right\} \]

Happy retirement Jean and Jérôme!
There exists a Global Capillary Pressure function P_{cg} s. t.:

\[
\begin{align*}
\frac{\partial P_{cg}}{\partial S_1}(s_1, s_3, p) &= f_1(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_c^{12}}{dS_1}(s_1), \\
\frac{\partial P_{cg}}{\partial S_3}(s_1, s_3, p) &= f_3(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_c^{32}}{dS_3}(s_3),
\end{align*}
\]

for $P_{\text{min}} \leq p \leq P_{\text{max}}$, $s = (s_1, s_3) \in \mathbb{T}$.

Happy retirement Jean and Jérôme!
Total Differential Condition (GC, Applicable Analysis 2009)

- There exists a **Global Capillary Pressure function** P_{cg} s. t. :

 \[
 \begin{align*}
 \frac{\partial P_{cg}}{\partial s_1}(s_1, s_3, p) &= f_1(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_c^{12}}{ds_1}(s_1), \\
 \frac{\partial P_{cg}}{\partial s_3}(s_1, s_3, p) &= f_3(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_c^{32}}{ds_3}(s_3),
 \end{align*}
 \]

 for $P_{min} \leq p \leq P_{max}$, $s = (s_1, s_3) \in T$.

- **Condition** $p_1 \leq p \leq p_3$ is satisfied if :

 $P_{cg}(1, 0, p) = 0$
Total Differential Condition (GC, Applicable Analysis 2009)

- There exists a Global Capillary Pressure function P_{cg} s. t. :

\[
\begin{align*}
\frac{\partial P_{cg}}{\partial S_1}(s_1, s_3, p) &= f_1(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_{12}^c}{ds_1}(s_1), \\
\frac{\partial P_{cg}}{\partial S_3}(s_1, s_3, p) &= f_3(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_{32}^c}{ds_3}(s_3),
\end{align*}
\]

for $P_{min} \leq p \leq P_{max}$, $s = (s_1, s_3) \in \mathbb{T}$.

- Condition $p_1 \leq p \leq p_3$ is satisfied if :

$P_{cg}(1, 0, p) = 0$

- When P_{cg} exists, necessarily

$P_{cg}(s) = 0 + \int_0^1 \nabla_s P_{cg}(\mathcal{C}(t)) \cdot \mathcal{C}'(t) dt$

is independant of \mathcal{C} !

Happy retirement Jean and Jérôme!
There exists a Global Capillary Pressure function P_{cg} s. t.:

$$
\begin{align*}
\frac{\partial P_{cg}}{\partial S_1}(s_1, s_3, p) &= f_1(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_c^{12}}{dS_1}(s_1), \\
\frac{\partial P_{cg}}{\partial S_3}(s_1, s_3, p) &= f_3(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_c^{32}}{dS_3}(s_3),
\end{align*}
$$

for $P_{\text{min}} \leq p \leq P_{\text{max}}$, $s = (s_1, s_3) \in \mathbb{T}$.

Condition $p_1 \leq p \leq p_3$ is satisfied if:

$$
P_{cg}(1, 0, p) = 0
$$

When P_{cg} exists, necessarily

$$
P_{cg}(s) = 0 + \int_0^1 \nabla_s P_{cg}(C(t)) \cdot C'(t) dt
$$

is independant of C!
Total Differential Condition (GC, Applicable Analysis 2009)

- There exists a Global Capillary Pressure function P_{cg} s. t.:

\[
\begin{align*}
\frac{\partial P_{cg}}{\partial S_1}(s_1, s_3, p) &= f_1(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_{c12}^{12}}{dS_1}(s_1), \\
\frac{\partial P_{cg}}{\partial S_3}(s_1, s_3, p) &= f_3(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_{c32}^{32}}{dS_3}(s_3),
\end{align*}
\]

for $P_{min} \leq p \leq P_{max}$, $s = (s_1, s_3) \in \mathbb{T}$.

- Condition $p_1 \leq p \leq p_3$ is satisfied if:

$P_{cg}(1, 0, p) = 0$

- When P_{cg} exists, necessarily

$P_{cg}(s) = 0 + \int_0^1 \nabla_s P_{cg}(C(t)) \cdot C'(t) dt$

is independant of C!

Happy retirement Jean and Jérôme!
There exists a Global Capillary Pressure function P_{cg} s. t. :

\[
\begin{align*}
\frac{\partial P_{cg}}{\partial S_1}(s_1, s_3, p) &= f_1(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_{c1}}{ds_1}(s_1), \\
\frac{\partial P_{cg}}{\partial S_3}(s_1, s_3, p) &= f_3(s_1, s_3, p - P_{cg}(s_1, s_3, p)) \frac{dP_{c32}}{ds_3}(s_3),
\end{align*}
\]

for $P_{min} \leq p \leq P_{max}$, $s = (s_1, s_3) \in \mathbb{T}$.

Condition $p_1 \leq p \leq p_3$ is satisfied if :

\[P_{cg}(1, 0, p) = 0 \]

When P_{cg} exists, necessarily

\[P_{cg}(s) = 0 + \int_0^1 \nabla_s P_{cg}(C(t)) \cdot C'(t) dt \]

is independent of C.

\[\downarrow \]

TD-condition on $kr_1, kr_2, kr_3, P_{c12}, P_{c32}$

Happy retirement Jean and Jérôme!
Global pressure formulation:

- When P_{cg} exists, the Global Pressure P is defined by:

$$P - P_2 = P_{cg}(s, P)$$

- P governs the global flow q:

$$q = -Kd(s_1, s_3, P)\{(1 - \partial P_{cg}/\partial P)\nabla P - \rho g \nabla Z\}$$
Global pressure formulation:

- When P_{cg} exists, the Global Pressure P is defined by:

$$P - P_2 = P_{cg}(s, P)$$

- P governs the global flow q:

$$q = -Kd(s_1, s_3, P)\{ (1 - \frac{\partial P_{cg}}{\partial P})\nabla P - \rho g \nabla Z \}$$

- For a single compressible fluid (gas), one has:

$$0 < \frac{\partial P_{cg}}{\partial P} \leq 1 \quad \text{over} \ T$$

- Numerical results show that:

$$0 < \frac{\partial P_{cg}}{\partial P} \leq 10^{-4} \quad \text{hence:} \quad 1 - \frac{\partial P_{cg}}{\partial P} \simeq 1$$
Global Capillary Pressure function $P_{cg} = P - P_2$
Degrees of freedom for TD relative permeabilities:

At each global pressure level p

- one can choose freely only two functions over \mathbb{T}:

 $s \in \mathbb{T} \mapsto P_{cg}(s, p)$ \hspace{0.5cm} \text{global capillary pressure function}

 $s \in \mathbb{T} \mapsto d(s, p)$ \hspace{0.5cm} \text{global mobility function}
Degrees of freedom for TD relative permeabilities:

At each global pressure level p

- one can choose freely only two functions over \mathbb{T}:
 \begin{align*}
 s \in \mathbb{T} & \mapsto P_{cg}(s, p) \quad \text{global capillary pressure function} \\
 s \in \mathbb{T} & \mapsto d(s, p) \quad \text{global mobility function}
 \end{align*}

- then associated TD fractional flows are given by:
 \[f_j(s, p) = \frac{\partial P_{cg}/\partial s_j(s, p)}{dP_c^j/\partial s_j(s_j)} , \quad j = 1, 3 \]
Degrees of freedom for TD relative permeabilities:

At each global pressure level p

- one can choose freely only two functions over T:

 $s \in T \sim P_{cg}(s,p)$ \quad \text{global capillary pressure function}

 $s \in T \sim d(s,p)$ \quad \text{global mobility function}

- then associated TD fractional flows are given by:

 $f_j(s,p) = \frac{\partial P_{cg}/\partial s_j(s,p)}{dP_c^{j2}/ds_j(s_j)}$, \quad j = 1, 3

- and associated TD relative permeabilities by:

 \[
 \begin{cases}
 k_{rj}(s,p) = f_j(s,p) d(s,p) / d_j(p - P_{cg}(s,p) + P_c^{j2}(s_j)) \quad j = 1, 3, \\
 k_{r2}(s,p) = (1 - f_1(s,p) - f_3(s,p)) d(s,p) / d_2(p - P_{cg}(s,p)) ,
 \end{cases}
 \]
Construction of TD-relative permeabilities

Available experimental data:
- for each fluid $j = 1, 2, 3$:
 - mobilities $d_j(p_j) = B_j(p_j)/\mu_j(p_j)$,
Construction of TD-relative permeabilities

Available experimental data:
- for each fluid $j = 1, 2, 3$:
 - mobilities $d_j(p_j) = B_j(p_j)/\mu_j(p_j)$,
- for each pair of fluids i, j:

\[
\begin{align*}
&\text{water} \quad \text{gas} \quad \text{oil} \\
&\text{water - gas data} \quad \text{gas - oil data} \quad \text{water - oil data}
\end{align*}
\]
Construction of **TD-relative permeabilities**

Available experimental data:

- for each fluid $j = 1, 2, 3$:
 - mobilities $d_j(p_j) = B_j(p_j)/\mu_j(p_j)$,
- for each pair of fluids i, j:
 - relative permeabilities $k_{r_{i,j}^i}^i, k_{r_{j,i}^j}^j$ (Mualem-Van Genuchten)
Construction of TD-relative permeabilities

Available experimental data:

• for each fluid $j = 1, 2, 3$:
 mobilities $d_j(p_j) = B_j(p_j) / \mu_j(p_j)$,

• for each pair of fluids i, j:
 relative permeabilities $k_{r_i^j}$, $k_{r_j^i}$ (Mualem-Van Genuchten)

• little known on the k_r’s inside \mathbb{T}!
Construction of TD-relative permeabilities

Available experimental data:

- for each fluid $j = 1, 2, 3$:

 mobilities $d_j(p_j) = B_j(p_j)/\mu_j(p_j)$,

- for each pair of fluids i, j:

 relative permeabilities $k_{r_{i,j}}^i, k_{r_{j,i}}^j$ (Mualem-Van Genuchten)

- little known on the k_r’s inside \mathbb{T}!

Question:

can TD-three-phase relative permeabilities on \mathbb{T} honor two-phase data on $\partial\mathbb{T}$?
Honoring two-phase data: 1 Determine P_{cg} on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Recall: on any curve $C : [0, 1] \rightarrow \mathbb{T}$, $P_{cg}(C(t))$ satisfies:

\[
(1) \quad \frac{dP_{cg}}{dt} = f_1(C, p - P_{cg}) \frac{dP^{12}_{c}}{ds_1}(C_1) C'_1 + f_3(C, p - P_{cg}) \frac{dP^{32}_{c}}{ds_3}(C_3) C'_3,
\]

- Use (1) to determine of P_{cg} on $\partial \mathbb{T}$:
Honoring two-phase data: 1 Determine P_{cg} on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Recall: on any curve $C : [0, 1] \rightarrow \mathbb{T}$, $P_{cg}(C(t))$ satisfies:

$$\frac{dP_{cg}}{dt} = f_1(C, p - P_{cg}) \frac{dP_{c12}}{ds_1}(C_1) C'_1 + f_3(C, p - P_{cg}) \frac{dP_{c32}}{ds_3}(C_3) C'_3,$$

- Use (1) to determine of P_{cg} on $\partial \mathbb{T}$:
 - on the water-gas side $\Rightarrow P_{cg}^{13}$

\[P_{cg} = 0 \]

Happy retirement Jean and Jérôme!
Honoring two-phase data: 1 Determine P_{cg} on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Recall: on any curve $C : [0, 1] \rightarrow \mathbb{T}$, $P_{cg}(C(t))$ satisfies:

$$
(1) \quad \frac{dP_{cg}}{dt} = f_1(C, p - P_{cg}) \frac{dP_c^{12}}{ds_1}(C_1) C'_1 + f_3(C, p - P_{cg}) \frac{dP_c^{32}}{ds_3}(C_3) C'_3,
$$

- Use (1) to determine of P_{cg} on $\partial \mathbb{T}$:
 - on the water-gas side $\quad \Rightarrow \quad P_{cg}^{13}$
 - on the water-oil side $\quad \Rightarrow \quad P_{cg}^{12}$

Happy retirement Jean and Jérôme!
Honoring two-phase data : 1 Determine P_{cg} on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Recall: on any curve $C : [0, 1] \rightarrow \mathbb{T}$, $P_{cg}(C(t))$ satisfies:

$$
(1) \quad \frac{dP_{cg}}{dt} = f_1(C, p - P_{cg}) \left(\frac{dP_{c12}^{12}}{ds_1} C_1' + f_3(C, p - P_{cg}) \frac{dP_{c32}^{32}}{ds_3} C_3' \right),
$$

- Use (1) to determine of P_{cg} on $\partial \mathbb{T}$:
 - on the water-gas side $\Rightarrow P_{c13}^{13}$
 - on the water-oil side $\Rightarrow P_{c12}^{12}$
 - on the gas-oil side $\Rightarrow P_{c23}^{23}$

$P_{cg}^{32}(0) = P_{cg}^{12}(1)$
Honoring two-phase data: 1 Determine P_{cg} on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Recall: on any curve $C : [0, 1] \rightarrow \mathbb{T}$, $P_{cg}(C(t))$ satisfies:

$$
(1) \quad \frac{dP_{cg}}{dt} = f_1(C, p - P_{cg}) \frac{dP_{12}^c}{ds_1}(C_1) C_1' + f_3(C, p - P_{cg}) \frac{dP_{32}^c}{ds_3}(C_3) C_3',
$$

- Use (1) to determine of P_{cg} on $\partial \mathbb{T}$:
 - on the water-gas side $\Rightarrow P_{13}^{cg}$
 - on the water-oil side $\Rightarrow P_{12}^{cg}$
 - on the gas-oil side $\Rightarrow P_{23}^{cg}$

- TD-compatibility condition for the two-phase k_r data:
 $$P_{13}^{cg}(1) = P_{23}^{cg}(1) (= +\infty !)$$
Honoring two-phase data: 1 Determine P_{cg} on ∂T

- Adjust P_{cg}^{32} to satisfy the TD-compatibility condition $P_{cg}^{13}(1) = P_{cg}^{32}(1)$
Honoring two-phase data: 1 Determine P_{cg} on $\partial \mathbb{T}$

- Adjust P_{cg}^{32} to satisfy the TD-compatibility condition $P_{cg}^{13}(1) = P_{cg}^{32}(1)$
- Implies minor changes on the oil-gas relative permeabilities:
Honoring two-phase data: 1 Determine P_{cg} on $\partial \mathcal{T}$

- now P_{cg} is available on $\partial \mathcal{T}$!
Honoring two-phase data: determine $\partial P_{cg}/\partial n$ on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Let $s \in \partial \mathbb{T}$, n normal to $\partial \mathbb{T}$ at s, and define:
 \[C : t \in [0, \epsilon] \mapsto C(t) = s - tn \in \mathbb{T} \]
 a curve normal to $\partial \mathbb{T}$ at s.

Then
\[
\frac{\partial P_{cg}}{\partial n}(s) = -\frac{d}{dt} P_{cg}(C(t))|_{t=0}.
\]
Honoring two-phase data: determine $\partial P_{cg}/\partial n$ on $\partial \mathbb{T}$

- Let p be a given global pressure level.
- Let $s \in \partial \mathbb{T}$, n normal to $\partial \mathbb{T}$ at s, and define:

 $$C : t \in [0, \epsilon] \rightarrow C(t) = s - tn \in \mathbb{T}$$

 a curve normal to $\partial \mathbb{T}$ at s.

Then

$$\frac{\partial P_{cg}}{\partial n}(s) = -\frac{d}{dt} P_{cg}(C(t)) \bigg|_{t=0}.$$

But using again equation (1):

$$\frac{dP_{cg}}{dt} = f_1(C, p - P_{cg}) \frac{dP_{c}^{12}}{ds_1}(C_1) C'_1 + f_3(C, p - P_{cg}) \frac{dP_{c}^{32}}{ds_3}(C_3) C'_3,$$

gives:

$$\frac{\partial P_{cg}}{\partial n} = \begin{cases}
\frac{\sqrt{3}}{3} f_{12} \frac{dP_{c}^{12}}{ds_1} & \text{(water-oil edge)}, \\
\frac{\sqrt{3}}{3} (f_{13} \frac{dP_{c}^{12}}{ds_1} + f_{33} \frac{dP_{c}^{32}}{ds_3}) & \text{(water-gas edge)}, \\
\frac{\sqrt{3}}{3} f_{33} \frac{dP_{c}^{32}}{ds_3} & \text{(gas oil edge)}.
\end{cases}$$
Honoring two-phase data: determine mobility d on $\partial\Omega$

$$d = \begin{cases}
kr_1 d_1 (p - P_{cg}^{12} + P_c^{12}) + kr_2 d_2 (p - P_{cg}^{12}) & \text{(water-oil)} \\
kr_1 d_1 (p - P_{cg}^{13} + P_c^{12}) + kr_3 d_3 (p - P_{cg}^{13} + P_c^{32}) & \text{(gas-water)} \\
kr_3 d_3 (p - P_{cg}^{32} + P_c^{32}) + kr_2^{32} d_2 (p - P_{cg}^{32}) & \text{(gas-oil)}
\end{cases}$$
Honoring two-phase data: determine mobility \(d \) on \(\partial T \)

\[
d = \begin{cases}
kr_1 d_1 (p - P_{cg}^{12} + P_c^{12}) + kr_2 d_2 (p - P_{cg}^{12}) & \text{(water-oil)} \\
kr_1 d_1 (p - P_{cg}^{13} + P_c^{12}) + kr_3 d_3 (p - P_{cg}^{13} + P_c^{32}) & \text{(gas-water)} \\
k r_3 d_3 (p - P_{cg}^{32} + P_c^{32}) + kr_2^{32} d_2 (p - P_{cg}^{32}) & \text{(gas-oil)}
\end{cases}
\]
Honoring two-phase data: 4 - Find P_{cg} and d inside \mathbb{T}

A - FIRST APPROACH: INTERPOLATION

- Harmonic for d and Biharmonic for P_{cg}:

\[
\begin{aligned}
-\Delta d &= 0 \quad \text{in } \mathbb{T}, \\
\frac{\partial d}{\partial n} &= d^{\text{data}} \quad \text{on } \partial\mathbb{T}.
\end{aligned}
\]

\[
\begin{aligned}
\Delta^2 P_{cg} &= 0 \quad \text{in } \mathbb{T}, \\
\frac{\partial P_{cg}}{\partial n} &= \frac{P_{cg}^{\text{data}}}{\partial n} \quad \text{on } \partial\mathbb{T}.
\end{aligned}
\]
Honoring two-phase data: 4 - Find P_{cg} and d inside \mathbb{T}

A - FIRST APPROACH: INTERPOLATION

- Harmonic for d and Biharmonic for P_{cg}:

$$\begin{cases}
-\Delta d &= 0 \quad \text{in } \mathbb{T}, \\
\quad d &= d_{\text{data}} \quad \text{on } \partial\mathbb{T}.
\end{cases}$$

$$\begin{cases}
\Delta^2 P_{cg} &= 0 \quad \text{in } \mathbb{T}, \\
\quad P_{cg} &= P_{cg_{\text{data}}} \quad \text{on } \partial\mathbb{T}, \\
\quad \frac{\partial P_{cg}}{\partial n} &= \frac{\partial P_{cg_{\text{data}}}}{\partial n} \quad \text{on } \partial\mathbb{T}.
\end{cases}$$

- Finite element parameterization:

 reduced HCT for P_{cg}, P^1 for d.

 (di Chiara Roupert, Chavent and Schaefer, J. Comp. Physic 2010)
Honoring two-phase data: 4 - Find P_{cg} and d inside \mathcal{T}

A - FIRST APPROACH : INTERPOLATION

- Harmonic for d and Biharmonic for P_{cg}:

$$
\begin{align*}
-\Delta d &= 0 \quad \text{in } \mathcal{T}, \\
\quad d &= d_{\text{data}} \quad \text{on } \partial \mathcal{T}.
\end{align*}
$$

$$
\begin{align*}
\Delta^2 P_{cg} &= 0 \quad \text{in } \mathcal{T},

\quad P_{cg} &= P_{cg_{\text{data}}} \quad \text{on } \partial \mathcal{T},

\quad \frac{\partial P_{cg}}{\partial n} &= \frac{\partial P_{cg_{\text{data}}}}{\partial n} \quad \text{on } \partial \mathcal{T}.
\end{align*}
$$

- Finite element parameterization:

 reduced HCT for P_{cg}, P^1 for d.

 (di Chiara Roupert, Chavent and Schaefer, J. Comp. Physic 2010)

- Limitations: no control on relative permeabilities inside \mathcal{T}

B - SECOND APPROACH : OPTIMIZATION ...still to be tested!
INTERPOLATION - Numerical results:

- global mobility d:

![Graph showing numerical results with axes and annotations]

Happy retirement Jean and Jérôme!
INTERPOLATION - Numerical results:

- global capillary pressure \(P_{cg} = \text{global pressure } p - \text{oil pressure } p_2 \)
INTERPOLATION - Numerical results:

- global pressure p - water pressure $p_1 = P_{cg} - P_c^{12}$
INTERPOLATION - Numerical results:

- **global pressure** p - **gas pressure** $p_3 = P_{cg} - p_{c}^{32}$
Step 1: $P_{cg} \Rightarrow$ TD Three-phase fractional flows

$$\nu_j = \frac{\partial P_{cg}}{\partial s_j} \left/ \frac{dP_c^{ij2}}{ds_j} \right., \ j = 1, 3 \ , \ \nu_2 = 1 - \nu_1 - \nu_3$$
INTERPOLATION - Back to relative permeabilities:

- **Step 1**: \(P_{cg} \Rightarrow \text{TD Three-phase fractional flows} \)

\[\nu_j = \frac{\partial P_{cg} / \partial s_j}{dP_c^{j2} / ds_j}, \quad j = 1, 3, \quad \nu_2 = 1 - \nu_1 - \nu_3 \]
INTERPOLATION - Back to relative permeabilities:

- **Step 1**: $P_{cg} \Rightarrow$ TD Three-phase fractional flows

$$\nu_j = \frac{\partial P_{cg}}{\partial s_j} \left/ \frac{dP_c^{j2}}{ds_j} \right., \ j = 1, 3, \ \nu_2 = 1 - \nu_1 - \nu_3$$
INTERPOLATION - Back to relative permeabilities:

- **Step 2**: \(P_{cg}, d \) ⇒ TD Three-phase relative permeabilities
INTERPOLATION - Back to relative permeabilities:

- **Step 2**: \(P_{cg}, d \Rightarrow \text{TD Three-phase relative permeabilities} \)

![Diagram showing relative permeabilities](image-url)
INTERPOLATION - Back to relative permeabilities:

- Step 2: $P_{cg}, d \Rightarrow$ TD Three-phase relative permeabilities

Happy retirement Jean and Jérôme!
For three-phase compressible flows:

- Equivalent global pressure formulation: no gradient of capillary pressure in pressure equation!
- Well defined transformation ($0 \leq \partial P_{cg}/\partial p < 1$)
- the global pressure p is a good numerical unknown!
 remains smooth when the mobility of one fluid vanishes
Conclusion

For three-phase compressible flows:

• Equivalent global pressure formulation:
 no gradient of capillary pressure in pressure equation!

• Well defined transformation \(0 \leq \partial P_{cg}/\partial p < 1\)

• the global pressure \(p\) is a good numerical unknown!
 remains smooth when the mobility of one fluid vanishes

Bad news: three-phase data have to satisfy a TD condition
Good news: TD relative permeabilities can be INTERPOLATED
 from classical water-oil, gas-oil and water-gas two-phase data.

Happy retirement Jean and Jérôme!
Conclusion

For three-phase compressible flows:

• Equivalent global pressure formulation: no gradient of capillary pressure in pressure equation!
• Well defined transformation \(0 \leq \partial P_{cg}/\partial p < 1\)
• the global pressure \(p\) is a good numerical unknown! remains smooth when the mobility of one fluid vanishes

Bad news: three-phase data have to satisfy a TD condition
Good news: TD relative permeabilities can be INTERPOLATED from classical water-oil, gas-oil and water-gas two-phase data.

Next step: replace INTERPOLATION by OPTIMIZATION:

• take constraints into account,
• try to match \(kr^\text{target}_j(s), j = 1 \ldots 3\).